Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transient flash method

Using picosecond flash spectroscopy Gupta et al. 2k) reported for 2-hydroxyphenylbenzotriazole in ethanol a short-lived transient (6 ps) followed by a transient absorption whose lifetime is estimated to be 600 ps. The authors assigned the short-lived transient to the "vertical singlet" while the long-lived transient is presumably the "proton transferred species". These measurements of transient absorptions with the picosecond flash method confirm our results derived from the fluorescence emission using the phase fluorimetric method. [Pg.11]

There are no ISO standards at present for polymers. However, a series of methods are being developed in TC 61 for conductivity and diffusivity of plastics. At the time of writing there are drafts for general principles, laser flash method, temperature wave analysis method and the Gustafsson method. The general principles draft is a bit misleading as it appears to deal only with transient methods, and the specific procedures so far drafted appear to have been selected at random from the many transient methods available. [Pg.280]

The desire for temporal resolution of photolysis led to the development of flash methods. In these experiments [70] the solution is exposed to a short (—10 ps width) burst of light at high intensity (several hundred joules dissipated in the flash lamp). Absorption by the photoactive solute creates a high initial concentration of the primary intermediate. Its decay with time often leads to the rise and fall of other transient species that appear later in the reaction scheme. Because these time dependencies tell much about the photolysis mechanism, flash methods are immensely valuable to photochemistry and have become very common. Usually, the intermediates are followed by UV or visible absorption spectroscopy. Berg and Schweiss were first to implement electrochemical monitoring [71], but Perone and his co-workers have been particularly active since the middle 1960s in the development and application of the technique [67,72-76]. [Pg.885]

The laser flash method is used for thermal diffusivity measurements. In this technique, a laser is used to pulse one side of a test specimen uniformly. The temperature rise of the other side is measured using an infrared detector. This transient is then used to calculate the thermal diffusivity. While the technique is simple in concept, nonidealities such as heat loss from the front and back surfaces complicate the resulting data analysis, so that fairly complex models need to be used to extract the thermal dilfu-sivity. These calculations can be easily performed by the computers used to run the instruments. [Pg.38]

Thermal conductivity is one of the most demanding thermophysical properties but difficult to obtain experimentally, because on Earth thermogravitational convection exerts a major effect on heat transfer and it is almost impossible to suppress this effect. There are four methods to obtain the thermal conductivity of molten silicon. Historically, thermal conductivity has been estimated from the measurement of electrical conductivity x and applying the Wiedemann-Franz law, as shown in Eq. (4.2) [5, 8, 52, 53]. Thermal diffusivity was measured also by a laser flash method [7, 24, 54] and is converted into thermal conductivity using density p and mass heat capacity Although transient hot-wire and hot-disk methods assure direct... [Pg.117]

Transient species, existing for periods of time of the order of a microsecond (lO s) or a nanosecond (10 s), may be produced by photolysis using far-ultraviolet radiation. Electronic spectroscopy is one of the most sensitive methods for detecting such species, whether they are produced in the solid, liquid or gas phase, but a special technique, that of flash photolysis devised by Norrish and Porter in 1949, is necessary. [Pg.67]

After the laser flash, one then monitors the progress of events by some rapidly responding method. Conductivity, absorption spectroscopy, and fluorescence spectroscopy are the methods most commonly used. If a reaction product has a characteristic absorption band of sufficient intensity, one can monitor its buildup with time. This might be a UV, visible, or IR band. The need for a band with a high molar absorptivity arises because the reactive transient is usually present at a relatively low concentration, KT6-lCr5 M being typical. If the species of interest is phosphorescent, then the timed decay of its phosphorescence intensity can be recorded. [Pg.264]

Transition state theory is presented with an emphasis on solution reactions and the Marcus approach. Indeed, to allow for this, I have largely eliminated the small amount of material on gas-phase reactions that appeared in the First Edition. Several treatments have been expanded, including linear free-energy relations, NMR line broadening, and pulse radiolytic and flash photolytic methods for picosecond and femtosecond transients. [Pg.294]

Throughout this section on pressure transients we have emphasized electron spectroscopy as a procedure for directly detecting surface species, and, with difficult calibration, their concentration. It is important to keep in mind that the detection limit for these is about 0.01 of a monolayer. Using flash desorption as a complementary technique this limit can be extended to 0.001 monolayer in certain cases. The fact remains that extremely labile chemisorbed species may be present in kinetically important but undetectable concentrations. Since residence times as short as 2 x 10 - seconds can be determined, molecular beam techniques, as described below, afford an alternative but indirect method of measuring the properties of these very reactive species. [Pg.51]

The results and discussion section is divided into two parts. The first part deals with direct laser flash photolysis of the MDI-PUE polymer and appropriate small molecule models. The transient spectra generated by direct excitation of the polyurethane are interpreted by consideration of the primary photochemical reactions of the carbamate moiety. The second part describes results obtained by production of a radical transient species which is capable of abstracting labile hydrogens from the polyurethane. This latter procedure represents an alternative method for production of the transient species which were obtained by direct excitation. [Pg.46]

Using kinetic flash photolysis, the decay of the transient species can be determined as a function of time at the appropriate single wavelength found by the spectroscopic method. [Pg.190]

The direct detection of the S <- Sj absorption in organic compounds has so far been achieved by a nanosecond or picosecond laser flash photolysis method. The general features of transient absorption spectra of metalloporphyrins actually suggest the presence of strong absorption bands in visible or ultraviolet region (38-40). However, as the transient absorption of the state often overlaps with that of ground state depletion, it is usually difficult to evaluate the absolute absorption cross sections for the transition by... [Pg.225]

Laser flash photolysis methods have also been applied to the study of nitrenium ion trapping rates and hfetimes. This method relies on short laser pulses to create a high transient concentration of the nitrenium ion, and fast detection technology to characterize its spectrum and lifetime The most frequently used detection method is fast UV-vis spectroscopy. This method has the advantage of high sensitivity, but provides very little specific information about the structure of the species being detected. More recently, time-resolved infrared (TRIR) and Raman spectroscopies have been used in conjunction with flash photolysis methods. These provide very detailed structural information, but suffer from lower detection sensitivity. [Pg.634]

There are a number of non-electrochemical techniques that have proven invaluable in combination with electrochemical results in understanding the chemistry and the kinetics. Laser flash photolysis (LFP) is a well-established technique for the study of the transient spectroscopy and kinetics of reactive intermediates. The technique is valuable for the studying of the kinetics of the reactions of radical anions, particularly those that undergo rapid stepwise dissociative processes. The kinetics of fragmentation of radical anions can be determined using this method if (i) the radical anion of interest can be formed in a process initiated by a laser pulse, (ii) it has a characteristic absorption spectrum with a suitable extinction coefficient, and (iii) the rate of decay of the absorption of the radical anion falls within the kinetic window of the LFP technique typically this is in the order of 1 x 10" s to 1 X 10 s . [Pg.102]

A convenient method for generating and trapping reactive ketenes is the flash-vacuum pyrolysis (FVP) of substituted Meldrum s acid derivatives. The dispirocyclobutane-l,3-dione 9 is obtained from the transient ketene 8 generated by FVP of the diester precursor 7.56... [Pg.98]

The 77-SCF MO Cl method has also been used446 to interpret spectral transitions of a series of possible intermediates in the reaction of uracil and cytosine with the solvated electrons eaq, produced by radiolysis of water. Experimentally this reaction has been investigated by Hayon,447 who used the technique of flash radiolysis. Hayon measured the optical-absorption spectra of the transient species in the UV range to obtain information on the site of attack of eaq on the pyrimidine base. At pH 5.0 the solvated electrons react with the pyrimidine molecules mainly at the C-2 and C-4 carbonyls, and the intermediates are rapidly protonatcd to give the corresponding ketyl radicals. For uracil Hayon found two absorption maxima (at 305 and < 280 nm) at pH 5.1 and one peak at 310 nm at pH 11.7. In this last case, on ionization of one of the chromophores the ketyl radical anion of the other nondissociated carbonyl is formed. Several species, 44, 45, 46, have been suggested by... [Pg.301]

The photolytic flash must have enough energy to prepare, in a very short time, a detectable concentration of transient species. The lowest detectable concentration depends on the probe technique, and here the methods of UV/VIS/near IR absorption and emission spectroscopy are the best. Their drawback is that they provide very little structural information about the nature of the transient species. IR and Raman spectra are much more informative, but they present many problems in fast reaction kinetics because of the weakness of the signals. [Pg.250]

Excitation of molecules inherently generates new electronic species which have their own unique absorption spectra. Ordinarily, secondary absorption due to electronically excited molecules is not observed because of the extremely low steady-state concentrations formed with moderate illumination. However, there are two general methods in which the transient absorption spectra of excited molecules may be observed (a) high-intensity irradiation of a solution of the solute in a rigid matrix, and (6) flash photolysis of the solute in either solution or solid state followed by a secondary flash from an analysis lamp. [Pg.301]

The pulse radiolysis method has been described in detail in some of the early papers (22, 22), in a brief review of the subject (23), and in a current comprehensive review (14). It is, in brief, a fast reaction method in which the external perturbation applied to the system is a microsecond pulse of electrons. The current is sufficiently high to produce an instantaneous concentration of transient species high enough to be observed by fast measurement of the optical absorption. Spectra may be recorded either photographically or spectrophotometrically. The kinetics are studied by fast spectrophotometry. Since a perturbing pulse as short as 0.4 /xsec. has been used, the time resolution has approached 10-7 sec. The flash photolysis method used in some of the other studies (27, 15) has been reviewed in detail (24). [Pg.43]


See other pages where Transient flash method is mentioned: [Pg.58]    [Pg.58]    [Pg.3]    [Pg.201]    [Pg.82]    [Pg.84]    [Pg.315]    [Pg.1167]    [Pg.1167]    [Pg.1566]    [Pg.2946]    [Pg.512]    [Pg.175]    [Pg.323]    [Pg.94]    [Pg.141]    [Pg.348]    [Pg.23]    [Pg.183]    [Pg.147]    [Pg.220]    [Pg.580]    [Pg.137]    [Pg.184]    [Pg.647]    [Pg.392]    [Pg.10]    [Pg.319]    [Pg.241]    [Pg.242]    [Pg.512]   
See also in sourсe #XX -- [ Pg.2 , Pg.14 ]




SEARCH



Flash method

Transient method

© 2024 chempedia.info