Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transfer bromination

When refluxed in an excess of a vicinal organic dibromide with or without a solvent, diaryl tellurium compounds produced diaryl tellurium dibromides in high yields1. The following dibromides effected these conversions 1,2-dibromoethane, 1,2-dibromocyclohexane, dibromocholesterol, and l,2-dibromo-2-phenylpropanoic acid1. Allyl bromide (but not butylbromide) transferred bromine to tellurium at 180 Diphenyl tellurium dihalides were observed as by-products when diphenyl tellurium was heated with iodoacetic acid or 1-bromopropanoic acid2. [Pg.561]

Like bromine, iodine is soluble in organic solvents, for example chloroform, which can be used to extract it from an aqueous solution. The iodine imparts a characteristic purple colour to the organic layer this is used as a test for iodine (p. 349). NB Brown solutions are formed when iodine dissolves in ether, alcohol, and acetone. In chloroform and benzene a purple solution is formed, whilst a violet solution is produced in carbon disulphide and some hydrocarbons. These colours arise due to charge transfer (p. 60) to and from the iodine and the solvent organic molecules. [Pg.320]

I he methyl iodide is transferred quantitatively (by means of a stream of a carrier gas such as carbon dioxide) to an absorption vessel where it either reacts with alcoholic silver nitrate solution and is finally estimated gravimetrically as Agl, or it is absorbed in an acetic acid solution containing bromine. In the latter case, iodine monobromide is first formed, further oxidation yielding iodic acid, which on subsequent treatment with acid KI solution liberates iodine which is finally estimated with thiosulphate (c/. p. 501). The advantage of this latter method is that six times the original quantity of iodine is finally liberated. [Pg.497]

Method 2 (from hydrazobenzene). Prepare a solution of sodium hypobromite by adding 10 g. (3-2 ml.) of bromine dropwise to a cold solution of 6-0 g. of sodium hydroxide in 75 ml. of water immersed in an ice bath. Dissolve 9-5 g. of hydrazobenzene (Section IV,87) in 60 ml. of ether contained in a separatory funnel, and add the cold sodimn hypobromite solution in small portions. Shake for 10 minutes, preferably mechanically. Separate the ether layer, pour it into a 100 ml. distilling flask, and distil off the ether by warming gently on a water bath. Dissolve the warm liquid residue in about 30 ml. of alcohol, transfer to a small beaker, heat to boiling on a water bath, add water dropwise to the hot solution until the azobenzene just commences to separate, render the solution clear again with a few drops of alcohol, and cool in ice water. Filter the orange crystals at the pump, and wash with a little 50 per cent, alcohol. Dry in the air. The yield is 8 g. [Pg.632]

A newer and equally effective way of swapping azides with halides (bromines or iodines) is in the use of phase transfer catalysts [68]. Strike wouldn t expect an underground chemist to purchase the exotic catalyst Aliquat 336 which the investigators in this reference used to get yields approaching 100% but an alternative catalyst of... [Pg.153]

X0 group present in hecogenin (79) is transferred to C-11 (84). Bromination of hecogenin in ben2ene yields the lla,23a-dibromo derivative (80). The latter is treated with sodium hydroxide in aqueous /-butanol to yield the crystalline 23-bromo-ketal (81) which is acetylated and then debrominated with... [Pg.102]

Bromination can be conveniently effected by transfer of bromine from one nucleus to another. As the Friedel-Crafts isomerization of bromoaromatic compounds generally takes place through an intermolecular mechanism, the migrating bromine atom serves as a source of positive bromine, thus effecting ring brominations (161,162). 2,4,6-Tribromophenol, for example, has been prepared by bromination of phenol with dibromobenzene. [Pg.561]

Dissolved Minerals. The most significant source of minerals for sustainable recovery may be ocean waters which contain nearly all the known elements in some degree of solution. Production of dissolved minerals from seawater is limited to fresh water, magnesium, magnesium compounds (qv), salt, bromine, and heavy water, ie, deuterium oxide. Considerable development of techniques for recovery of copper, gold, and uranium by solution or bacterial methods has been carried out in several countries for appHcation onshore. These methods are expected to be fully transferable to the marine environment (5). The potential for extraction of dissolved materials from naturally enriched sources, such as hydrothermal vents, may be high. [Pg.288]

Electrochemical Process. Applying an electrical current to a brine solution containing propylene results in oxidation of propylene to propylene oxide. The chemistry is essentially the same as for the halohydrin process. AH of the chemistry takes place in one reactor. Most of the reported work uses sodium or potassium bromide as the electrolyte. Bromine, generated from bromide ions at the anode, reacts with propylene and water to form propylene bromohydrin. Hydroxide generated at the cathode then reacts with the bromohydrin to yield propylene oxide (217—219). The net reaction involves transfer of two electrons ... [Pg.141]

Charge-Transfer Compounds. Similat to iodine and chlorine, bromine can form charge-transfer complexes with organic molecules that can serve as Lewis bases. The frequency of the iatense uv charge-transfer adsorption band is dependent on the ionization potential of the donor solvent molecule. Electronic charge can be transferred from a TT-electron system as ia the case of aromatic compounds or from lone-pairs of electrons as ia ethers and amines. [Pg.284]

Charge-transfer compounds can be isolated ia the crystalline state, although low temperatures are often required. The bromine—dioxane compound, for example, has a chain stmeture (42). [Pg.284]

Similar reactions occur with ammonia and HOBr (19—25), but since HOBr is a stronger electrophile than HOCl, formation rates are faster. Because of rapid bromine transfer between bromamines, equihbrium concentrations of the respective bromamines are obtained quickly. Mon ohrom amine predominates at basic pH at high N Br ratios. Below pH 8.5, NHBr2 and NBr predominate. Tribromamine formation is favored at lower pH and higher Br N ratios. The bromamines are less stable than chloramines but are better disinfectants. [Pg.453]

To the acid chloride, mechanically stirred and heated on the steam bath, is added 2.5 kg. (805 ml. 15.6 moles) of dry bromine as rapidly as it will react (Note 5). The addition requires about 12 hours. The contents of the flask are stirred and heated an additional 2 hours, transferred to a dropping funnel (Note 6), and added in a thin stream to 5 1. of absolute ethyl alcohol, which has previously been placed in a 12-1. flask provided with a stopper carrying an effleient reflux condenser, a separatory funnel, and a mechanical stirrer. The resulting vigorous reaction is controlled by external cooling. After the dibromoacid chloride has been added, the reaction mixture is allowed to stand at room temperature overnight and is then poured into 5 1. of cold water. The top alcoholic aqueous layer is decanted and extracted once with 8 1. of ether. The oily bottom layer is dissolved in the ether extract, washed first with 1 1. of a 2% sodium bisulfite solution, then with two 1-1. portions of 3% sodium carbonate solution, and finally with several portions of water. The ether solution is dried over 175 g. of potassium carbonate the solvent is distilled on the steam bath. The yield of residual ester (Note 7) amounts to 2260-2400 g. (91-97% of the theoretical amount). [Pg.58]

Fig. 1. Examples of temperature dependence of the rate constant for the reactions in which the low-temperature rate-constant limit has been observed 1. hydrogen transfer in the excited singlet state of the molecule represented by (6.16) 2. molecular reorientation in methane crystal 3. internal rotation of CHj group in radical (6.25) 4. inversion of radical (6.40) 5. hydrogen transfer in halved molecule (6.16) 6. isomerization of molecule (6.17) in excited triplet state 7. tautomerization in the ground state of 7-azoindole dimer (6.1) 8. polymerization of formaldehyde in reaction (6.44) 9. limiting stage (6.45) of (a) chain hydrobromination, (b) chlorination and (c) bromination of ethylene 10. isomerization of radical (6.18) 11. abstraction of H atom by methyl radical from methanol matrix [reaction (6.19)] 12. radical pair isomerization in dimethylglyoxime crystals [Toriyama et al. 1977]. Fig. 1. Examples of temperature dependence of the rate constant for the reactions in which the low-temperature rate-constant limit has been observed 1. hydrogen transfer in the excited singlet state of the molecule represented by (6.16) 2. molecular reorientation in methane crystal 3. internal rotation of CHj group in radical (6.25) 4. inversion of radical (6.40) 5. hydrogen transfer in halved molecule (6.16) 6. isomerization of molecule (6.17) in excited triplet state 7. tautomerization in the ground state of 7-azoindole dimer (6.1) 8. polymerization of formaldehyde in reaction (6.44) 9. limiting stage (6.45) of (a) chain hydrobromination, (b) chlorination and (c) bromination of ethylene 10. isomerization of radical (6.18) 11. abstraction of H atom by methyl radical from methanol matrix [reaction (6.19)] 12. radical pair isomerization in dimethylglyoxime crystals [Toriyama et al. 1977].
Bromine (128 g., 0.80 mole) is added dropwise to the well-stirred mixture over a period of 40 minutes (Note 4). After all the bromine has been added, the molten mixture is stirred at 80-85° on a steam bath for 1 hour, or until it solidifies if that happens first (Note 5). The complex is added in portions to a well-stirred mixture of 1.3 1. of cracked ice and 100 ml. of concentrated hydrochloric acid in a 2-1. beaker (Note 6). Part of the cold aqueous layer is added to the reaction flask to decompose whatever part of the reaction mixture remains there, and the resulting mixture is added to the beaker. The dark oil that settles out is extracted from the mixture with four 150-ml. portions of ether. The extracts are combined, washed consecutively with 100 ml. of water and 100 ml. of 5% aqueous sodium bicarbonate solution, dried with anhydrous sodium sulfate, and transferred to a short-necked distillation flask. The ether is removed by distillation at atmospheric pressure, and crude 3-bromo-acetophenone is stripped from a few grams of heavy dark residue by distillation at reduced pressure. The colorless distillate is carefully fractionated in a column 20 cm. long and 1.5 cm. in diameter that is filled with Carborundum or Heli-Pak filling. 4 hc combined middle fractions of constant refractive index are taken as 3-l)romoaccto])lu iu)nc weight, 94 -100 g. (70-75%) l).p. 75 76°/0.5 mm. tif 1.57,38 1.5742 m.]). 7 8° (Notes 7 and 8). [Pg.8]

The first possibility envisages essentially the same mechanism as for the second-order process, but with Bt2 replacing solvent in the rate-determining conversion to an ion pair. The second mechanism pictures Bt2 attack on a reversibly formed ion-pair intermediate. The third mechanism postulates collide of a ternary complex tiiat is structurally similar to the initial charge-transfer complex but has 2 1 bromine alkene stoichiometry. There are very striking similarities between the second-order and third-order processes in terms of magnitude of p values and product distribution. In feet, there is a quantitative correlation between the rates of the two processes over a broad series of alkenes, which can be expressed as... [Pg.365]

In summary, it appears friat bromination usually involves a charge-transfer complex which collapses to an ion-pair intermediate. The cation can be a carbocation, as in the case of styrenes, or a bromonium ioiL The complex can evidently also be captured by bromide ion when it is present in sufficiently high concentration. [Pg.366]

A company produced bromine in Arkansas and brominated compounds in New Jersey. A risk assessment resulted in a recommendation to consider the transfer of the bromination processes to the bromine production site in Arkansas. Economics and the decrease in risk justified such a transfer and it was done. Although safety was not the only consideration, it was an important factor in this decision. [Pg.93]


See other pages where Transfer bromination is mentioned: [Pg.289]    [Pg.580]    [Pg.289]    [Pg.1124]    [Pg.289]    [Pg.580]    [Pg.289]    [Pg.1124]    [Pg.936]    [Pg.176]    [Pg.282]    [Pg.301]    [Pg.430]    [Pg.580]    [Pg.679]    [Pg.695]    [Pg.773]    [Pg.859]    [Pg.926]    [Pg.222]    [Pg.477]    [Pg.319]    [Pg.263]    [Pg.322]    [Pg.330]    [Pg.511]    [Pg.148]    [Pg.557]    [Pg.670]    [Pg.42]    [Pg.231]    [Pg.364]    [Pg.253]   
See also in sourсe #XX -- [ Pg.580 ]




SEARCH



Amino acids, bromination, solid-phase H-atom transfer

Bromine atom transfer

Bromine transfer

Bromine transfer

Bromine, free radical transfer reactions

Bromine-containing charge transfer

Bromine-olefin charge transfer complexes as essential intermediates in bromination

Radical bromine-transfer

© 2024 chempedia.info