Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

TOPICAL reaction mechanism

Nonlinear polymer formation in emulsion polymerization is a challenging topic. Reaction mechanisms that form long-chain branching in free-radical polymerizations include chain transfer to the polymer and terminal double bond polymerization. Polymerization reactions that involve multifunctional monomers such as vinyl/divinyl copolymerization reactions are discussed separately in Sect. 4.2.2. For simplicity, in this section we assume that both the radicals and the polymer molecules that formed are distributed homogeneously inside the polymer particle. [Pg.94]

A special type of substituent effect which has proved veiy valuable in the study of reaction mechanisms is the replacement of an atom by one of its isotopes. Isotopic substitution most often involves replacing protium by deuterium (or tritium) but is applicable to nuclei other than hydrogen. The quantitative differences are largest, however, for hydrogen, because its isotopes have the largest relative mass differences. Isotopic substitution usually has no effect on the qualitative chemical reactivity of the substrate, but often has an easily measured effect on the rate at which reaction occurs. Let us consider how this modification of the rate arises. Initially, the discussion will concern primary kinetic isotope effects, those in which a bond to the isotopically substituted atom is broken in the rate-determining step. We will use C—H bonds as the specific topic of discussion, but the same concepts apply for other elements. [Pg.222]

In addition to reactions, mechanisms, and structure, the student should have some familiarity with the literature of organic chemistry. A chapter devoted to this topic has been placed in Appendix A, though many teachers may wish to cover this material at the beginning of the course. [Pg.2092]

The necessity of the statistical approach has to be stressed once more. Any statement in this topic has a definitely statistical character and is valid only with a certain probability and in certain range of validity, limited as to the structural conditions and as to the temperature region. In fact, all chemical conceptions can break dovra when the temperature is changed too much. The isokinetic relationship, when significantly proved, can help in defining the term reaction series it can be considered a necessary but not sufficient condition of a common reaction mechanism and in any case is a necessary presumption for any linear free energy relationship. Hence, it does not at all detract from kinetic measurements at different temperatures on the contrary, it gives them still more importance. [Pg.473]

The rates of chemical processes and their variation with conditions have been studied for many years, usually for the purpose of determining reaction mechanisms. Thus, the subject of chemical kinetics is a very extensive and important part of chemistry as a whole, and has acquired an enormous literature. Despite the number of books and reviews, in many cases it is by no means easy to find the required information on specific reactions or types of reaction or on more general topics in the field. It is the purpose of this series to provide a background reference work, which will enable such information to be obtained either directly, or from the original papers or reviews quoted. [Pg.624]

The chemistry of the oxidative and nonoxidative photodegradation of poly(vinyl chloride) is reviewed with emphasis on work that has been published since the early 1970 s. Topics covered include the nature of the photoinitiating species, the photoinitiation mechanism, and the structural consequences and reaction mechanism of the overall photodegradation process. Also included is a summary of recent studies on the determination of structural defects in poly(vinyl chloride) by carbon-13 NMR. [Pg.211]

Table 6.6 lists some reactions of the electron in water, ammonia, and alcohols. These are not exhaustive, but have been chosen for the sake of analyzing reaction mechanisms. Only three alcohols—methanol, ethanol, and 2-propanol—are included where intercomparison can be effected. On the theoretical side, Marcus (1965a, b) applied his electron transfer concept (Marcus, 1964) to reactions of es. The Russian school simultaneously pursued the topic vigorously (Levich, 1966 Dogonadze et al, 1969 Dogonadze, 1971 Vorotyntsev et al, 1970 see also Schmidt, 1973). Kestner and Logan (1972) pointed out the similarity between the Marcus theory and the theories of the Russian school. The experimental features of eh reactions have been detailed by Hart and Anbar (1970), and a review of various es reactions has been presented by Matheson (1975). Bolton and Freeman (1976) have discussed solvent effects on es reaction rates in water and in alcohols. [Pg.178]

The book focuses on three main themes catalyst preparation and activation, reaction mechanism, and process-related topics. A panel of expert contributors discusses synthesis of catalysts, carbon nanomaterials, nitric oxide calcinations, the influence of carbon, catalytic performance issues, chelating agents, and Cu and alkali promoters. They also explore Co/silica catalysts, thermodynamic control, the Two Alpha model, co-feeding experiments, internal diffusion limitations. Fe-LTFT selectivity, and the effect of co-fed water. Lastly, the book examines cross-flow filtration, kinetic studies, reduction of CO emissions, syncrude, and low-temperature water-gas shift. [Pg.407]

The majority of the presentations can be grouped into three subject areas catalyst preparation and activation, reaction mechanism, and process-related topics. [Pg.422]

He found the time to be the coeditor of two different book series and author of two teaching texts, one shortly to be completed on inorganic reaction mechanisms . His paperback Bioinorganic Chemistry, first published in 1984, was the first book to provide a get started approach to this vast topic. It has proved to be a best selling undergraduate course... [Pg.253]

Topics in Phosphorus Chemistry, Vols. 1-11, Grayson, M. and Griffith, E.J., Eds., Wiley-InterScience, New York, 1964-1983 — This series has contributed chapters concerned with individual types of reactions, mechanisms, and spectroscopy of phosphorus compounds. [Pg.23]

The enhanced synthetic potential of rhodium-complex-catalyzed enantioselective hydrogenation provided by these advances in ligand design has led to renewed interest in the reaction mechanism, and here we highlight four recent topics (i) the extended base of reactive intermediates (ii) an improved quadrant model for ligand-substrate interactions (iii) computational approaches to mechanism and (iv) (bis)-monophosphine rhodium complexes in enantioselective hydrogenation. These are discussed in turn. [Pg.1078]

Solving the detailed reaction mechanisms to produce rational explanations of cationoid polymerisations and reliable values of kinetic parameters has been Peter s consistent goal for over 50 years. Unlike many people who devote their lives to a single topic, if, in order to advance the subject, some new experimental technique was required he and his group developed it over the years they developed several devices and procedures to generate more-reliable data. Peter, therefore, was a serious experimentalist as well as a careful analyser and scrutinizer of data, data of his and of others. Over the years he freely criticised not only the work of others but also his own work (as is apparent in this volume) in order to develop a more complete understanding of systems. Thus, this book reports his contributions warts and all where one paper may criticise a preceding paper. [Pg.8]

In this chapter, we will summarize the relevant theoretical studies on the reaction mechanisms of transition metal catalyzed borations. It is our hope that an overall picture can be given in a manner which can be easily understood without detailing all the theoretical aspects. It should be noted here that other comprehensive reviews, both experimental and theoretical, on the topic of catalytic boration reactions can also be found elsewhere in the literature [3-6]. [Pg.192]

The third and last part of the book (Chapters 12-16) deals with zeolite catalysis. Chapter 12 gives an overview of the various reactions which have been catalyzed by zeolites, serving to set the reader up for in-depth discussions on individual topics in Chapters 13-16. The main focus is on reactions of hydrocarbons catalyzed by zeolites, with some sections on oxidation catalysis. The literature review is drawn from both the patent and open literature and is presented primarily in table format. Brief notes about commonly used zeolites are provided prior to each table for each reaction type. Zeolite catalysis mechanisms are postulated in Chapter 13. The discussion includes the governing principles of performance parameters like adsorption, diffusion, acidity and how these parameters fundamentally influence zeolite catalysis. Brief descriptions of the elementary steps of hydrocarbon conversion over zeolites are also given. The intent is not to have an extensive review of the field of zeolite catalysis, but to select a sufficiently large subset of published literature through which key points can be made about reaction mechanisms and zeolitic requirements. [Pg.627]

During the coverage period of this chapter, reviews have appeared on the following topics reactions of electrophiles with polyfluorinated alkenes, the mechanisms of intramolecular hydroacylation and hydrosilylation, Prins reaction (reviewed and redefined), synthesis of esters of /3-amino acids by Michael addition of amines and metal amides to esters of a,/3-unsaturated carboxylic acids," the 1,4-addition of benzotriazole-stabilized carbanions to Michael acceptors, control of asymmetry in Michael additions via the use of nucleophiles bearing chiral centres, a-unsaturated systems with the chirality at the y-position, and the presence of chiral ligands or other chiral mediators, syntheses of carbo- and hetero-cyclic compounds via Michael addition of enolates and activated phenols, respectively, to o ,jS-unsaturated nitriles, and transition metal catalysis of the Michael addition of 1,3-dicarbonyl compounds. ... [Pg.419]

The present volume, the thirty-fourth in the series, surveys research on organic reaction mechanisms described in the literature dated December 1997 to November 1998. In order to limit the size of the volume, we must necessarily exclude or restrict overlap with other publications which review specialist areas (e.g. photochemical reactions, biosynthesis, electrochemistry, organometallic chemistry, surface chemistry and heterogeneous catalysis). In order to minimize duplication, while ensuring a comprehensive coverage, the Editors conduct a survey of all relevant literature and allocate publications to appropriate chapters. While a particular reference may be allocated to more than one chapter, we do assume that readers will be aware of the alternative chapters to which a borderline topic of interest may have been preferentially assigned. [Pg.678]

This chapter details the chemistry of nitrosomethanides and their corresponding acids and is primarily devoted to the subject as a whole and to its basic concepts, ranging from molecules to polymers, from synthesis to reaction mechanisms and from molecular to solid state structures, topics which are often aided by computational results. [Pg.656]

Reviews are available on topics not covered in this section, e.g., on reaction mechanism, classical resolution procedures, and various methods for the assessment of optical and enantiomeric purity of allenes5-8. Methods for the evaluation of enantiomeric excess, particularly for the elusive alkylallenes without additional functional groups, are known9-11. [Pg.537]

We continue our study of chemical kinetics with a presentation of reaction mechanisms. As time permits, we complete this section of the course with a presentation of one or more of the topics Lindemann theory, free radical chain mechanism, enzyme kinetics, or surface chemistry. The study of chemical kinetics is unlike both thermodynamics and quantum mechanics in that the overarching goal is not to produce a formal mathematical structure. Instead, techniques are developed to help design, analyze, and interpret experiments and then to connect experimental results to the proposed mechanism. We devote the balance of the semester to a traditional treatment of classical thermodynamics. In Appendix 2 the reader will find a general outline of the course in place of further detailed descriptions. [Pg.286]


See other pages where TOPICAL reaction mechanism is mentioned: [Pg.325]    [Pg.325]    [Pg.915]    [Pg.1338]    [Pg.2091]    [Pg.21]    [Pg.679]    [Pg.1]    [Pg.4]    [Pg.7]    [Pg.254]    [Pg.109]    [Pg.4]    [Pg.480]    [Pg.1]    [Pg.79]    [Pg.58]    [Pg.48]    [Pg.228]    [Pg.388]    [Pg.290]    [Pg.293]    [Pg.173]    [Pg.580]    [Pg.220]    [Pg.3]    [Pg.282]    [Pg.1502]    [Pg.424]   


SEARCH



Mechanical Topics

TOPICAL mechanism

TOPICAL reaction

© 2024 chempedia.info