Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohol Methanol

Methyl alcohol is poisonous and is commonly used to denature ethyl alcohol. Methanol poisoning results from ingestion, inhalation of methanol vapors, or absorption through the skin. Methanol is transformed in the body to formaldehyde (H2CO) by the enzyme alcohol dehydrogenase. The formaldehyde is then metabolized to formic acid (HCOOH) [Pg.174]

Methanol is used as a fuel additive. The common gasoline additive HEET is pure methanol and is used as a gas-line antifreeze and water remover. Methanol is used as a fuel in camp [Pg.175]

One energy application of methanol in its early stages of development is the direct methanol fuel cell (DMFC). A fuel cell is essentially a battery in which the chemicals are continuously supplied from an external source. A common fuel cell consists of a polymer electrolyte sandwiched between a cathode and anode. The electrodes are porous carbon rods with platinum [Pg.176]


Alcohols. Methanol, ethanol, n propanol, propan-i-ol.n-butanol, glycol, glycerol, benzyl alcohol, cyclohexanol. [Pg.316]

Esters of the homologous acids are prepared by adding silver oxide in portions rather than in one lot to a hot solution or suspension of the diazo ketone in an anhydrous alcohol (methyl, ethyl or n-propyl alcohol) methanol is generally used and the silver oxide is reduced to metallic silver, which usually deposits as a mirror on the sides of the flask. The production of the ester may frequently be carried out in a homogeneous medium by treating a solution of the diazo ketone in the alcohol with a solution of silver benzoate in triethylamlne. [Pg.903]

The last variation we should discuss is about the use of solvent. Ever-bitching about the rarity and price of chemicals, the bees have thrust their anger at the DMF used in this method. TDK sent Strike an article that gives some credence to this [16]. In it the alcohols methanol, ethanol, 1-propanol, ethanediol and others were used in place of DMF with beautifully high yields. Below is the sample experimental from the article Oust picture using safrole or allylbenzene in place of the 1-hexene) ... [Pg.73]

Esterifica.tlon. The process flow sheet (Fig. 4) outlines the process and equipment of the esterification step in the manufacture of the lower acryflc esters (methyl, ethyl, or butyl). For typical art, see References 69—74. The part of the flow sheet containing the dotted lines is appropriate only for butyl acrylate, since the lower alcohols, methanol and ethanol, are removed in the wash column. Since the butanol is not removed by a water or dilute caustic wash, it is removed in the a2eotrope column as the butyl acrylate a2eotrope this material is recycled to the reactor. [Pg.154]

Chemicals have long been manufactured from biomass, especially wood (sHvichemicals), by many different fermentation and thermochemical methods. For example, continuous pyrolysis of wood was used by the Ford Motor Co. in 1929 for the manufacture of various chemicals (Table 20) (47). Wood alcohol (methanol) was manufactured on a large scale by destmctive distillation of wood for many years until the 1930s and early 1940s, when the economics became more favorable for methanol manufacture from fossil fuel-derived synthesis gas. [Pg.26]

A wide selection of amino resin compositions is commercially available. They are all alkylated to some extent in order to provide compatibiUty with the other film formers, and formulation stabiUty. They vary not only in the type of amine (melamine, urea, ben2oguanamine, and glycolutil) used, but also in the concentration of combined formaldehyde, and the type and concentration of alkylation alcohol (/ -butanol, isobutyl alcohol, methanol). [Pg.328]

In addition to its water solubility poly(vinyl pyrrolidone) is soluble in a very wide range of materials, including aliphatic halogenated hydrocarbons (methylene dichloride, chloroform), many monohydric and polyhdric alcohols (methanol, ethanol, ethylene glycol), some ketones (acetyl acetone) and lactones (a-butyrolactone), lower aliphatic acids (glacial acetic acid) and the nitro-paraffins. The polymer is also compatible with a wide range of other synthetic polymers, with gums and with plasticisers. [Pg.475]

Alcohols — (ROH) are not very reactive. The lower molecular weight alcohols (methanol, ethanol, propanol) are completely miscible with water, but the heavier alcohols tend to be less soluble. Most common alcohols are flammable. Aromatic... [Pg.169]

The rate of hydrogen (or deuterium) uptake with homogeneous catalysts is usually faster in benzene-alcohol (methanol or ethanol) solvent systems or in acetone than in tetrahydrofuran or in benzene alone. Whereas... [Pg.186]

Water adds to the triple bond of perfluorobutylalkynols in refluxing 98% formic acid to give the perfluorobutyl keto alcohol Methanolic potassium hydroxide or prolonged reflux m formic acid converts the keto alcohol to 2,2-dimethyl-5-perfluoropropyl-2,2-dimethylturan-3(2//)-one [2] (equation 3). [Pg.757]

Methyl alcohol (methanol) is the first member of the aliphatic alcohol family. It ranks among the top twenty organic chemicals consumed in the U.S. The current world demand for methanol is approximately 25.5 million tons/year (1998) and is expected to reach 30 million tons by the year 2002. The 1994 U.S. production was 10.8 billion pounds. [Pg.149]

The results obtained by measuring the affinity to oxygen in the presence of various monohydric alcohols (methanol, ethanol, 2-propanol, 1-propanol) 140-144> were interpreted in terms of the Monod-Wyman-Changeux model145), by which the change of the standard free-energy difference between R and T state in the absence of oxygen, due to the addition of alcohol, can be determined, i.e. [Pg.26]

Methane A methyl group Methyl alcohol (methanol) Methylamine... [Pg.83]

Methanol is also formed as a byproduct when charcoal is made by heating wood in the absence of air. For this reason, it is sometimes called wood alcohol. Methanol is used in jet fuels and as a solvent, gasoline additive, and starting material for several industrial syntheses. It is a deadly poison ingestion of as little as 25 mL can be fatal. The antidote in this case is a solution of sodium hydrogen carbonate, NaHC03. [Pg.592]

Aliphatic alcohols Methanol CH3OH Animal waste — 0-100 ppbv... [Pg.149]

The effect of propylene content on the EB radiation grafting of AA onto EPR to obtain hydrophilic elastomers has been investigated. Degree of grafting has been found to increase with the addition of alcohol (methanol and 1-propanol) into water as solvent for grafting which occurs easily in EPR of lower propylene content of 22% [376]. [Pg.882]

Adsorption phenomena from solutions onto sohd surfaces have been one of the important subjects in colloid and surface chemistry. Sophisticated application of adsorption has been demonstrated recently in the formation of self-assembhng monolayers and multilayers on various substrates [4,7], However, only a limited number of researchers have been devoted to the study of adsorption in binary hquid systems. The adsorption isotherm and colloidal stabihty measmement have been the main tools for these studies. The molecular level of characterization is needed to elucidate the phenomenon. We have employed the combination of smface forces measmement and Fomier transform infrared spectroscopy in attenuated total reflection (FTIR-ATR) to study the preferential (selective) adsorption of alcohol (methanol, ethanol, and propanol) onto glass surfaces from their binary mixtures with cyclohexane. Om studies have demonstrated the cluster formation of alcohol adsorbed on the surfaces and the long-range attraction associated with such adsorption. We may call these clusters macroclusters, because the thickness of the adsorbed alcohol layer is about 15 mn, which is quite large compared to the size of the alcohol. The following describes the results for the ethanol-cycohexane mixtures [10],... [Pg.3]

Intermolecular hydroalkoxylation of 1,1- and 1,3-di-substituted, tri-substituted and tetra-substituted allenes with a range of primary and secondary alcohols, methanol, phenol and propionic acid was catalysed by the system [AuCl(IPr)]/ AgOTf (1 1, 5 mol% each component) at room temperature in toluene, giving excellent conversions to the allylic ethers. Hydroalkoxylation of monosubstituted or trisubstituted allenes led to the selective addition of the alcohol to the less hindered allene terminus and the formation of allylic ethers. A plausible mechanism involves the reaction of the in situ formed cationic (IPr)Au" with the substituted allene to form the tt-allenyl complex 105, which after nucleophilic attack of the alcohol gives the o-alkenyl complex 106, which, in turn, is converted to the product by protonolysis and concomitant regeneration of the cationic active species (IPr)-Au" (Scheme 2.18) [86]. [Pg.46]


See other pages where Alcohol Methanol is mentioned: [Pg.259]    [Pg.182]    [Pg.447]    [Pg.357]    [Pg.114]    [Pg.2173]    [Pg.60]    [Pg.338]    [Pg.368]    [Pg.379]    [Pg.99]    [Pg.431]    [Pg.48]    [Pg.490]    [Pg.605]    [Pg.490]    [Pg.108]    [Pg.558]    [Pg.869]    [Pg.304]    [Pg.29]    [Pg.233]    [Pg.243]    [Pg.253]    [Pg.103]    [Pg.458]    [Pg.338]    [Pg.368]    [Pg.379]    [Pg.285]    [Pg.343]    [Pg.238]   
See also in sourсe #XX -- [ Pg.106 , Pg.118 , Pg.177 , Pg.260 , Pg.300 ]

See also in sourсe #XX -- [ Pg.373 , Pg.373 ]

See also in sourсe #XX -- [ Pg.425 ]

See also in sourсe #XX -- [ Pg.402 ]




SEARCH



© 2024 chempedia.info