Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titration definition

Description of the Method. The operational definition of water hardness is the total concentration of cations in a sample capable of forming insoluble complexes with soap. Although most divalent and trivalent metal ions contribute to hardness, the most important are Ca + and Mg +. Hardness is determined by titrating with EDTA at a buffered pH of 10. Eriochrome Black T or calmagite is used as a visual indicator. Hardness is reported in parts per million CaCOs. [Pg.326]

The alkalinity is determined by titration of the sample with a standard acid (sulfuric or hydrochloric) to a definite pH. If the initial sample pH is >8.3, the titration curve has two inflection points reflecting the conversion of carbonate ion to bicarbonate ion and finally to carbonic acid (H2CO2). A sample with an initial pH <8.3 only exhibits one inflection point corresponding to conversion of bicarbonate to carbonic acid. Since most natural-water alkalinity is governed by the carbonate—bicarbonate ion equiUbria, the alkalinity titration is often used to estimate their concentrations. [Pg.230]

The total concentration or amount of chlorine-based oxidants is often expressed as available chorine or less frequendy as active chlorine. Available chlorine is the equivalent concentration or amount of Cl needed to make the oxidant according to equations 1—4. Active chlorine is the equivalent concentration or amount of Cl atoms that can accept two electrons. This is a convention, not a description of the reaction mechanism of the oxidant. Because Cl only accepts two electrons as does HOCl and monochloramines, it only has one active Cl atom according to the definition. Thus the active chlorine is always one-half of the available chlorine. The available chlorine is usually measured by iodomettic titration (7,8). The weight of available chlorine can also be calculated by equation 5. [Pg.142]

Buffers are solutions that tend to resist changes in their pH as acid or base is added. Typically, a buffer system is composed of a weak acid and its conjugate base. A solution of a weak acid that has a pH nearly equal to its by definition contains an amount of the conjugate base nearly equivalent to the weak acid. Note that in this region, the titration curve is relatively flat (Figure 2.15). Addition of H then has little effect because it is absorbed by the following reaction ... [Pg.50]

The last definition has widespread use in the volumetric analysis of solutions. If a fixed amount of reagent is present in a solution, it can be diluted to any desired normality by application of the general dilution formula V,N, = V N. Here, subscripts 1 and 2 refer to the initial solution and the final (diluted) solution, respectively V denotes the solution volume (in milliliters) and N the solution normality. The product VjN, expresses the amount of the reagent in gram-milliequivalents present in a volume V, ml of a solution of normality N,. Numerically, it represents the volume of a one normal (IN) solution chemically equivalent to the original solution of volume V, and of normality N,. The same equation V N, = V N is also applicable in a different context, in problems involving acid-base neutralization, oxidation-reduction, precipitation, or other types of titration reactions. The justification for this formula relies on the fact that substances always react in titrations, in chemically equivalent amounts. [Pg.330]

Brdnsted-Lowry theory, 194 contrast definitions, 194 indicators, 190 reactions, 188 titrations, 188 Acids, 183 aqueous, 179 carboxylic, 334 derivatives of organic, 337 equilibrium calculations, 192 experimental introduction, 183 names of common, 183 naming of organic, 339 properties of, 183 relative strengths, 192, 451 strength of, 190 summary, 185 weak, 190, 193 Actinides, 414 Actinium... [Pg.455]

A1C13, or S02 in an inert solvent cause colour changes in indicators similar to those produced by hydrochloric acid, and these changes are reversed by bases so that titrations can be carried out. Compounds of the type of BF3 are usually described as Lewis acids or electron acceptors. The Lewis bases (e.g. ammonia, pyridine) are virtually identical with the Bransted-Lowry bases. The great disadvantage of the Lewis definition of acids is that, unlike proton-transfer reactions, it is incapable of general quantitative treatment. [Pg.23]

Discussion. The hydroxides of sodium, potassium, and barium are generally employed for the preparation of solutions of standard alkalis they are water-soluble strong bases. Solutions made from aqueous ammonia are undesirable, because they tend to lose ammonia, especially if the concentration exceeds 0.5M moreover, it is a weak base, and difficulties arise in titrations with weak acids (compare Section 10.15). Sodium hydroxide is most commonly used because of its cheapness. None of these solid hydroxides can be obtained pure, so that a standard solution cannot be prepared by dissolving a known weight in a definite volume of water. Both sodium hydroxide and potassium hydroxide are extremely hygroscopic a certain amount of alkali carbonate and water are always present. Exact results cannot be obtained in the presence of carbonate with some indicators, and it is therefore necessary to discuss methods for the preparation of carbonate-free alkali solutions. For many purposes sodium hydroxide (which contains 1-2 per cent of sodium carbonate) is sufficiently pure. [Pg.289]

The standard solution is prepared by dissolving a weighed amount of pure potassium iodate in a solution containing a slight excess of pure potassium iodide, and diluting to a definite volume. This solution has two important uses. The first is as a source of a known quantity of iodine in titrations [compare Section 10.115(A)] it must be added to a solution containing strong acid it cannot be employed in a medium which is neutral or possesses a low acidity. [Pg.386]

At definite times samples are withdrawn and titrated by an appropriate method. The temperature is controlled either with a constant temperature oil bath or a heating jacket and a P.I.D. regulation with a captor plunged in the reaction medium. [Pg.55]

During the course of a polyesterification the volume and the weight of the reaction mixture vary because condensation water is released. In most cases, the progress of the reaction is followed by titration of the acid groups at definite intervals the carboxy group concentration is expressed in equivalents per kilogram. Consequently, several authors tried to find out if the weight decrease due to the elimination of water must be taken into account. [Pg.60]

Lippi et. al (87) and Dirstine (88) circumvented titration by converting the liberated fatty acids into copper salts, which after extraction in chloroform are reacted with diethyldithio-carbamate to form a colored complex which is measured photometrically. While the end point appears to be more sensitive than the pH end point determination, the advantages are outweighed by the additional steps of solvent extraction, centrifugation and incomplete extraction when low concentrations of copper salts are present. Other substrates used for the measurement of lipase activity have been tributyrin ( ), phenyl laurate (90), p-nit ro-pheny1-stearate and 3-naphthyl laurate (91). It has been shown that these substrates are hydrolyzed by esterases and thus lack specificity for lipase. Studies on patients with pancreatitis indicate olive oil emulsion is definitely superior to water soluble esters as substrates for measuring serum lipase activity. [Pg.213]

Definitions. Titrimetric Reactions. Acid-base Titrations. Applications of Acid-base Titrations. Redox Titrations. Applications of Redox Titrations. Complexometric Titrations. Ethylenediaminetetraacetic Acid (EDTA). Applications of EDTA Titrations. Titrations with Complexing Agents Other Than EDTA. Precipitation Titrations. ... [Pg.7]

The problem the analyst has is to choose indicators that change color close enough to an equivalence point so that the accuracy of the experiment is not diminished, which really means at any point during the inflection point. (Refer to Section 4.2 for the definitions of equivalence point and end point.) It almost seems like an impossible task, since there must be an indicator for each possible acid or base to be titrated. Fortunately, there are a large number of indicators available, and there is at least one available for all acids and bases, with the exception of only the extremely weak acids and bases. Figure 5.5 lists some of these indicators and shows the pH ranges over which they change color. [Pg.102]

The fat to be examined (0-5-0-7 g.) is dissolved in 15 c.c. of chloroform in a dry conical flask (capacity 500 c.c.) and 25 c.c. of the standardised iodine solution are added. If, after a short time, the colour of the solution diminishes to a light brown, it is necessary to add a further 10 c.c. of the iodine solution. After four hours the colour of the solution should still be dark brown. Potassium iodide solution (20 c.c. of 10 per cent solution) is now added and the uncombined iodine still present titrated as above. The calculation is made in accordance with the definition of iodine value . Lard, olive oil, or linseed oil should be examined. [Pg.151]


See other pages where Titration definition is mentioned: [Pg.157]    [Pg.1162]    [Pg.58]    [Pg.422]    [Pg.337]    [Pg.261]    [Pg.262]    [Pg.527]    [Pg.14]    [Pg.574]    [Pg.735]    [Pg.297]    [Pg.273]    [Pg.241]    [Pg.20]    [Pg.371]    [Pg.1431]    [Pg.430]    [Pg.827]    [Pg.245]    [Pg.131]    [Pg.246]    [Pg.73]    [Pg.193]    [Pg.400]    [Pg.47]    [Pg.47]    [Pg.47]    [Pg.421]    [Pg.601]   
See also in sourсe #XX -- [ Pg.3752 ]




SEARCH



Ethylenediaminetetraacetic acid titrations definition

Titratable acidity, definition

© 2024 chempedia.info