Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium dioxide properties

Fillers. These are used to reduce cost in flexible PVC compounds. It is also possible to improve specific properties such as insulation resistance, yellowing in sunlight, scuff resistance, and heat deformation with the use of fillers (qv). Typical filler types used in PVC are calcium carbonate, clays, siHca, titanium dioxide, and carbon black. [Pg.327]

The second form consists of Pt metal but the iridium is present as iridium dioxide. Iridium metal may or may not be present, depending on the baking temperature (14). Titanium dioxide is present in amounts of only a few weight percent. The analysis of these coatings suggests that the platinum metal acts as a binder for the iridium oxide, which in turn acts as the electrocatalyst for chlorine discharge (14). In the case of thermally deposited platinum—iridium metal coatings, these may actually form an intermetallic. Both the electrocatalytic properties and wear rates are expected to differ for these two forms of platinum—iridium-coated anodes. [Pg.121]

A significant advantage of the PLM is in the differentiation and recognition of various forms of the same chemical substance polymorphic forms, eg, brookite, mtile, and anatase, three forms of titanium dioxide calcite, aragonite and vaterite, all forms of calcium carbonate Eorms I, II, III, and IV of HMX (a high explosive), etc. This is an important appHcation because most elements and compounds possess different crystal forms with very different physical properties. PLM is the only instmment mandated by the U.S. Environmental Protection Agency (EPA) for the detection and identification of the six forms of asbestos (qv) and other fibers in bulk samples. [Pg.333]

Heterogeneous Photocatalysis. Heterogeneous photocatalysis is a technology based on the irradiation of a semiconductor (SC) photocatalyst, for example, titanium dioxide [13463-67-7] Ti02, zinc oxide [1314-13-2] ZnO, or cadmium sulfide [1306-23-6] CdS. Semiconductor materials have electrical conductivity properties between those of metals and insulators, and have narrow energy gaps (band gap) between the filled valence band and the conduction band (see Electronic materials Semiconductors). [Pg.400]

Hydrolysis of solutions of Ti(IV) salts leads to precipitation of a hydrated titanium dioxide. The composition and properties of this product depend critically on the precipitation conditions, including the reactant concentration, temperature, pH, and choice of the salt (46—49). At room temperature, a voluminous and gelatinous precipitate forms. This has been referred to as orthotitanic acid [20338-08-3] and has been represented by the nominal formula Ti02 2H20 (Ti(OH). The gelatinous precipitate either redissolves or peptizes to a colloidal suspension ia dilute hydrochloric or nitric acids. If the suspension is boiled, or if precipitation is from hot solutions, a less-hydrated oxide forms. This has been referred to as metatitanic acid [12026-28-7] nominal formula Ti02 H2O (TiO(OH)2). The latter precipitate is more difficult to dissolve ia acid and is only soluble ia concentrated sulfuric acid or hydrofluoric acid. [Pg.120]

The properties of hydrated titanium dioxide as an ion-exchange (qv) medium have been widely studied (51—55). Separations include those of alkaH and alkaline-earth metals, zinc, copper, cobalt, cesium, strontium, and barium. The use of hydrated titanium dioxide to separate uranium from seawater and also for the treatment of radioactive wastes from nuclear-reactor installations has been proposed (56). [Pg.120]

Physical and Chemical Properties. Titanium dioxide [13463-67-7] occurs in nature in three crystalline forms anatase [1317-70-0] brookite [12188-41 -9] and mtile [1317-80-2]. These crystals are essentially pure titanium dioxide but contain small amounts of impurities, such as iron, chromium, or vanadium, which darken them. Rutile is the thermodynamically stable form at all temperatures and is one of the two most important ores of titanium. [Pg.120]

The main electroceramic apphcations of titanium dioxide derive from its high dielectric constant (see Table 6). Rutile itself can be used as a dielectric iu multilayer capacitors, but it is much more common to use Ti02 for the manufacture of alkaline-earth titanates, eg, by the cocalciuation of barium carbonate and anatase. The electrical properties of these dielectrics are extremely sensitive to the presence of small (<20 ppm) quantities of impurities, and high performance titanates require consistently pure (eg, >99.9%) Ti02- Typical products are made by the hydrolysis of high purity titanium tetrachloride. [Pg.121]

Alkaline-Earth Titanates. Some physical properties of representative alkaline-earth titanates ate Hsted in Table 15. The most important apphcations of these titanates are in the manufacture of electronic components (109). The most important member of the class is barium titanate, BaTi03, which owes its significance to its exceptionally high dielectric constant and its piezoelectric and ferroelectric properties. Further, because barium titanate easily forms solid solutions with strontium titanate, lead titanate, zirconium oxide, and tin oxide, the electrical properties can be modified within wide limits. Barium titanate may be made by, eg, cocalcination of barium carbonate and titanium dioxide at ca 1200°C. With the exception of Ba2Ti04, barium orthotitanate, titanates do not contain discrete TiO ions but ate mixed oxides. Ba2Ti04 has the P-K SO stmcture in which distorted tetrahedral TiO ions occur. [Pg.127]

Titanium Silicides. The titanium—silicon system includes Ti Si, Ti Si, TiSi, and TiSi (154). Physical properties are summarized in Table 18. Direct synthesis by heating the elements in vacuo or in a protective atmosphere is possible. In the latter case, it is convenient to use titanium hydride instead of titanium metal. Other preparative methods include high temperature electrolysis of molten salt baths containing titanium dioxide and alkalifluorosiUcate (155) reaction of TiCl, SiCl, and H2 at ca 1150°C, using appropriate reactant quantities for both TiSi and TiSi2 (156) and, for Ti Si, reaction between titanium dioxide and calcium siUcide at ca 1200°C, followed by dissolution of excess lime and calcium siUcate in acetic acid. [Pg.132]

Barium titanate is usually produced by the soHd-state reaction of barium carbonate and titanium dioxide. Dielectric and pie2oelectric properties of BaTiO can be affected by stoichiometry, micro stmcture, and additive ions that can enter into soHd solution. In the perovskite lattice, substitutions of Pb ", Sr ", Ca ", and Cd " can be made for part of the barium ions, maintaining the ferroelectric characteristics. Similarly, the TP" ion can partially be replaced with Sn +, Zr +, Ce +, and Th +. The possibihties for forming solution alloys in all these stmctures offer a range of compositions, which present a... [Pg.482]

W. Kampfer, and E. Stieg, Jr., Color Eng. 44, 35—40, 44 (1967). A description of the manufacture, properties, and uses of titanium dioxide as a colorant for paint, food, plastics, and other materials. [Pg.455]

Color Concentrates. Color concentrates have become the method of choice to incorporate colorants into resins. Color concentrates have high ratios of colorant to a compatible vehicle. The colorant may be added at 70% colorant to 30% vehicle in a titanium dioxide mixture whereas the ratio may be 15% colorant to 85% vehicle in a carbon black mixture. The amount of colorant that can be added is dependent on the surface area and the oil absorption of the colorant and the wetting abiHty of the vehicle. The normal goal is to get as much colorant in the concentrate as possible to obtain the greatest money value for the product. Furthermore, less added vehicle minimizes the effect on the physical or chemical properties of the resin system. [Pg.456]


See other pages where Titanium dioxide properties is mentioned: [Pg.403]    [Pg.1873]    [Pg.403]    [Pg.1873]    [Pg.653]    [Pg.296]    [Pg.552]    [Pg.532]    [Pg.70]    [Pg.541]    [Pg.543]    [Pg.4]    [Pg.8]    [Pg.22]    [Pg.7]    [Pg.9]    [Pg.140]    [Pg.433]    [Pg.260]    [Pg.53]    [Pg.157]    [Pg.116]    [Pg.122]    [Pg.122]    [Pg.124]    [Pg.124]    [Pg.127]    [Pg.128]    [Pg.143]    [Pg.419]    [Pg.209]    [Pg.209]    [Pg.452]    [Pg.456]    [Pg.371]    [Pg.493]    [Pg.188]    [Pg.372]    [Pg.578]    [Pg.631]   
See also in sourсe #XX -- [ Pg.81 ]




SEARCH



Adsorption properties, titanium dioxide

Dioxides properties

Photochemical properties, titanium dioxide

Photochemical properties, titanium dioxide pigments

Titanium dioxide

Titanium dioxide coating films properties

Titanium dioxide pigments (titania properties

© 2024 chempedia.info