Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamics 406 INDEX

Molecular descriptors must then be computed. Any numerical value that describes the molecule could be used. Many descriptors are obtained from molecular mechanics or semiempirical calculations. Energies, population analysis, and vibrational frequency analysis with its associated thermodynamic quantities are often obtained this way. Ah initio results can be used reliably, but are often avoided due to the large amount of computation necessary. The largest percentage of descriptors are easily determined values, such as molecular weights, topological indexes, moments of inertia, and so on. Table 30.1 lists some of the descriptors that have been found to be useful in previous studies. These are discussed in more detail in the review articles listed in the bibliography. [Pg.244]

By an assortment of thermodynamic manipulations, the quantities dn/dp and [N (d G/dp )o] can be eliminated from Eq. (10.48) and replaced by the measurable quantities a, /3, and dn/dT the coefficients of thermal expansion, isothermal compressibility, and the temperature coefficient of refractive index, respectively. With these substitutions, Eq. (10.48) becomes... [Pg.682]

Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44). Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44).
Correlation methods discussed include basic mathematical and numerical techniques, and approaches based on reference substances, empirical equations, nomographs, group contributions, linear solvation energy relationships, molecular connectivity indexes, and graph theory. Chemical data correlation foundations in classical, molecular, and statistical thermodynamics are introduced. [Pg.232]

Theoretical and structural studies have been briefly reviewed as late as 1979 (79AHC(25)147) (discussed were the aromaticity, basicity, thermodynamic properties, molecular dimensions and tautomeric properties ) and also in the early 1960s (63ahC(2)365, 62hC(17)1, p. 117). Significant new data have not been added but refinements in the data have been recorded. Tables on electron density, density, refractive indexes, molar refractivity, surface data and dissociation constants of isoxazole and its derivatives have been compiled (62HC(17)l,p. 177). Short reviews on all aspects of the physical properties as applied to isoxazoles have appeared in the series Physical Methods in Heterocyclic Chemistry (1963-1976, vols. 1-6). [Pg.3]

Partial Molar Properties Consider a homogeneous fluid solution comprised of any number of chemical species. For such a PVT system let the symbol M represent the molar (or unit-mass) value of any extensive thermodynamic property of the solution, where M may stand in turn for U, H, S, and so on. A total-system property is then nM, where n = Xi/i, and i is the index identifying chemical species. One might expect the solution propei fy M to be related solely to the properties M, of the pure chemical species which comprise the solution. However, no such generally vahd relation is known, and the connection must be establi ed experimentally for eveiy specific system. [Pg.517]

Although the Langelier index is probably the most frequently quoted measure of a water s corrosivity, it is at best a not very reliable guide. All that the index can do, and all that its author claimed for it is to provide an indication of a water s thermodynamic tendency to precipitate calcium carbonate. It cannot indicate if sufficient material will be deposited to completely cover all exposed metal surfaces consequently a very soft water can have a strongly positive index but still be corrosive. Similarly the index cannot take into account if the precipitate will be in the appropriate physical form, i.e. a semi-amorphous egg-shell like deposit that spreads uniformly over all the exposed surfaces rather than forming isolated crystals at a limited number of nucleation sites. The egg-shell type of deposit has been shown to be associated with the presence of organic material which affects the growth mechanism of the calcium carbonate crystals . Where a substantial and stable deposit is produced on a metal surface, this is an effective anticorrosion barrier and forms the basis of a chemical treatment to protect water pipes . However, the conditions required for such a process are not likely to arise with any natural waters. [Pg.359]

Sufficient stability of the hydrocarbon ions, as the salt or in the solution, is an obvious prerequisite for these procedures, and, in practice, selecting or designing the stable ions and choosing a proper solvent are tasks of primary importance. As an ordinary stability index for the ions, thermodynamic scales referred to the water molecule, i.e. p CR+ and pKa values, are chosen for the carbocation and carbanion, respectively. [Pg.175]

As thermodynamic stability indexes for the hydrocarbon ions, pA R+ and pA a values [(4) and (5)] have been widely applied for the carbocation and carbanion, respectively, in solution. Here K + stands for the equilibrium constant for the reaction (6) of a carbocation and a water molecule stands for the equilibrium constant for the reaction (7) of a hydrocarbon with a water molecule to give the conjugate carbanion. The equilibrium constants are given by (8) and (9) for dilute aqueous solutions. Obviously, the reference system for the pKn+ scale is the corresponding alcohol, and... [Pg.178]

Figure 5. The horizontal axis shows the value of fragility as computed from the thermodynamics by the RFOT theory, and the vertical axis contains the fragility directly measured in kinetics experiments. Here m is the so-called fragility index, defined according to m = [(ilogjoi(7 )/(i(l/7 )]j,. m is somewhat more useful than the fragility D, because deviations from... Figure 5. The horizontal axis shows the value of fragility as computed from the thermodynamics by the RFOT theory, and the vertical axis contains the fragility directly measured in kinetics experiments. Here m is the so-called fragility index, defined according to m = [(ilogjoi(7 )/(i(l/7 )]j,. m is somewhat more useful than the fragility D, because deviations from...
Energy effects associated with the dissolution of a given substance (which in the following is distinguished with the index " ) can be determined experimentally. They depend on the system s initial and final state, but not on the path taken by the process. Hence, for calculations, the device of thermodynamic cycles is often used, where the true path of the process is replaced by another path (which may even be a path that actually cannot be realized) for which the energy effects of the individual intermediate steps can be determined. [Pg.107]

Simple thermodynamic treatment of gas compression stipulates that the maximum temperature (Tmax) attained is dependent on the adiabatic index (y) of the gas ... [Pg.369]

With applications to protein solution thermodynamics in mind, we now present an alternative derivation of the potential distribution theorem. Consider a macroscopic solution consisting of the solute of interest and the solvent. We describe a macroscopic subsystem of this solution based on the grand canonical ensemble of statistical thermodynamics, accordingly specified by a temperature, a volume, and chemical potentials for all solution species including the solute of interest, which is identified with a subscript index 1. The average number of solute molecules in this subsystem is... [Pg.320]

This temperature rise can be detected directly (laser calorimetry and optical calorimetry), or indirectly by measuring the change in either the refractive index (thermal lensing, beam deflection or refraction and thermal grating) or the volume (photo- or optoacoustic methods). This review will focus primarily on photoacoustic methods because they have been the most widely used to obtain thermodynamic and kinetic information about reactive intermediates. Other calorimetric methods are discussed in more detail in a recent review.7... [Pg.254]

The quantities introduced have a number of properties necessary for thermodynamic equilibrium to establish between the subsystem and the reservoir at / - oo. First of all, we note that by virtue of the definition (4.2.30) the summation of the matrix elements Wqq over the first index gives zero. Therefore, summation over q of both sides of Eq. (4.2.31) makes the product Cqv vanish. From... [Pg.100]

This discrepancy might be explained if after about an hour the reaction approached equilibrium and slowed due to a diminishing thermodynamic drive. If the Fe+++ produced did not precipitate on the hematite surface, and did not form either hematite or goethite (FeOOH), it would accumulate in solution and weaken the drive for uranyl reduction. As the saturation index for hematite reached about 1.7, or about 1.25 for goethite, reaction would cease. [Pg.418]

To establish [5] the thermodynamic meaning of the index of probability r/ = (ip — H)/9, it is assumed that the distribution g = ev changes as the condition of the system changes, but always subject to the normalization condition f evdfl = 1. It follows that the derivative d f evdQ, = 0. It is assumed that both 9 and tp, as well as extensive parameters may be altered, such that... [Pg.450]

As in energy representation the fundamental thermodynamic equation in entropy representation (3) may also be subjected to Legendre transformation to generate a series of characteristic functions designated as Massieu-Planck (MP) functions, m. The index m denotes the number of intensive parameters introduced as independent variables, i.e. [Pg.483]

A theoretical study at a HF/3-21G level of stationary structures in view of modeling the kinetic and thermodynamic controls by solvent effects was carried out by Andres and coworkers [294], The reaction mechanism for the addition of azide anion to methyl 2,3-dideaoxy-2,3-epimino-oeL-eiythrofuranoside, methyl 2,3-anhydro-a-L-ciythrofuranoside and methyl 2,3-anhydro-P-L-eiythrofuranoside were investigated. The reaction mechanism presents alternative pathways (with two saddle points of index 1) which act in a kinetically competitive way. The results indicate that the inclusion of solvent effects changes the order of stability of products and saddle points. From the structural point of view, the solvent affects the energy of the saddles but not their geometric parameters. Other stationary points geometries are also stable. [Pg.344]

As a measure of their thermodynamic stability, the pAfR+ values for the carbocation salts were determined spectrophotometrically in a buffer solution prepared in aqueous solution of acetonitrile. The KR+ scale is defined by the equilibrium constant for the reaction of a carbocation with water molecule (/CR+ = [R0H][H30+]/[R+]). Therefore, the larger p/CR+ index indicates higher stability for the carbocation. However, the neutralization of these cations was not completely reversible. This is attributable to instability of the neutralized products. The instability of the neutralized products should arise from production of unstable polyolefinic substructure by attack of the base at the aromatic core. [Pg.177]


See other pages where Thermodynamics 406 INDEX is mentioned: [Pg.132]    [Pg.319]    [Pg.291]    [Pg.49]    [Pg.162]    [Pg.111]    [Pg.450]    [Pg.300]    [Pg.458]    [Pg.1296]    [Pg.106]    [Pg.391]    [Pg.1628]    [Pg.300]    [Pg.114]    [Pg.166]    [Pg.583]    [Pg.120]    [Pg.120]    [Pg.146]    [Pg.163]    [Pg.16]    [Pg.3]    [Pg.251]    [Pg.28]    [Pg.48]    [Pg.6]   


SEARCH



INDEX Thermodynamic systems

INDEX found from thermodynamics

INDEX thermodynamic functions

Subject index thermodynamics

Thermodynamic control INDEX

Thermodynamic databases INDEX

Thermodynamic efficiency index

Thermodynamic probability INDEX

Thermodynamic properties INDEX

Thermodynamic stability 324 INDEX

Thermodynamics, kinetics 356 INDEX

© 2024 chempedia.info