Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Basic mathematics

Many basic mathematical functions already exists(FFT, loops, booleans,. ), which simplifies the work of the programmer. [Pg.1008]

An overview of some basic mathematical techniques for data correlation is to be found herein together with background on several types of physical property correlating techniques and a road map for the use of selected methods. Methods are presented for the correlation of observed experimental data to physical properties such as critical properties, normal boiling point, molar volume, vapor pressure, heats of vaporization and fusion, heat capacity, surface tension, viscosity, thermal conductivity, acentric factor, flammability limits, enthalpy of formation, Gibbs energy, entropy, activity coefficients, Henry s constant, octanol—water partition coefficients, diffusion coefficients, virial coefficients, chemical reactivity, and toxicological parameters. [Pg.232]

Correlation methods discussed include basic mathematical and numerical techniques, and approaches based on reference substances, empirical equations, nomographs, group contributions, linear solvation energy relationships, molecular connectivity indexes, and graph theory. Chemical data correlation foundations in classical, molecular, and statistical thermodynamics are introduced. [Pg.232]

Prohahly the most important of the fundamentals concerning centrifugal compression equipment is an understanding of the basic operating characteristics. Although some basic mathematical relations should be kept in mind, the graphical representation makes these points easier to understand. Figure 12-61 is a representation of typical oper-... [Pg.504]

The remainder of the book is divided into eleven largely self-contained chapters. Chapter 2 introduces some basic mathematical formalism that will be used throughout the book, including set theory, information theory, graph theory, groups, rings and field theory, and abstract automata. It concludes with a preliminary mathematical discussion of one and two dimensional CA. [Pg.18]

Collins, M.J., Riley, M.S., Child, A.M. and Turner-Walker, G. 1995 A basic mathematical simulation of the chemical degradation of ancient collagen. Journal of Archaeological Science 22 175-183. [Pg.157]

On the continuum level of gas flow, the Navier-Stokes equation forms the basic mathematical model, in which dependent variables are macroscopic properties such as the velocity, density, pressure, and temperature in spatial and time spaces instead of nf in the multi-dimensional phase space formed by the combination of physical space and velocity space in the microscopic model. As long as there are a sufficient number of gas molecules within the smallest significant volume of a flow, the macroscopic properties are equivalent to the average values of the appropriate molecular quantities at any location in a flow, and the Navier-Stokes equation is valid. However, when gradients of the macroscopic properties become so steep that their scale length is of the same order as the mean free path of gas molecules,, the Navier-Stokes model fails because conservation equations do not form a closed set in such situations. [Pg.97]

For the second-order difference equations capable of describing the basic mathematical-physics problems, boundary-value problems with additional conditions given at different points are more typical. For example, if we know the value for z = 0 and the value for i = N, the corresponding boundary-value problem can be formulated as follows it is necessary to find the solution yi, 0 < i < N, of problem (6) satisfying the boundary conditions... [Pg.8]

This section introduces the basic mathematics of linear vector spaces as an alternative conceptual scheme for quantum-mechanical wave functions. The concept of vector spaces was developed before quantum mechanics, but Dirac applied it to wave functions and introduced a particularly useful and widely accepted notation. Much of the literature on quantum mechanics uses Dirac s ideas and notation. [Pg.80]

This is not a fundamental mathematics bookt nor is it intended to serve a textbook for a specific course, but rather as a reference for students in chemistry and physics at all university levels. Although it is not computer-based, I have made many references to current applications - in particular to try to convince students that they should know more about what goes on behind the screen when they do one of their computer experiments. As an example, most students in the sciences now use a program for the fast Fourier transform. How many of them have any knowledge of the basic mathematics involved ... [Pg.6]

Several examples of the application of quantum mechanics to relatively simple problems have been presented in earlier chapters. In these cases it was possible to find solutions to the Schrtidinger wave equation. Unfortunately, there are few others. In virtually all problems of interest in physics and chemistry, there is no hope of finding analytical solutions, so it is essential to develop approximate methods. The two most important of them are certainly perturbation theory and the variation method. The basic mathematics of these two approaches will be presented here, along with some simple applications. [Pg.151]

Ibbbutt, Peter, Basic Mathematics for Chemists, John Wiley Sons, Chichester (1994). [Pg.201]


See other pages where Basic mathematics is mentioned: [Pg.46]    [Pg.1546]    [Pg.641]    [Pg.178]    [Pg.5]    [Pg.215]    [Pg.39]    [Pg.53]    [Pg.38]    [Pg.1]    [Pg.2]    [Pg.4]    [Pg.6]    [Pg.8]    [Pg.10]    [Pg.12]    [Pg.14]    [Pg.16]    [Pg.18]    [Pg.20]    [Pg.22]    [Pg.24]    [Pg.26]    [Pg.28]    [Pg.30]    [Pg.32]    [Pg.34]    [Pg.36]    [Pg.38]    [Pg.40]    [Pg.42]    [Pg.44]    [Pg.46]    [Pg.48]    [Pg.50]    [Pg.52]    [Pg.54]   
See also in sourсe #XX -- [ Pg.115 ]




SEARCH



© 2024 chempedia.info