Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamics catalyst

This review analyzed the chemistry involved, thermodynamics, catalysts used, reaction pathways and mechanisms of various reforming techniques reported for the conversion of ethanol into H2-rich gas. The known reforming processes are broadly classified into three categories, namely steam reforming of ethanol (SRE), partial oxidation of ethanol (POE) and oxidative steam reforming (OSR)/autothermal reforming of ethanol. All these reactions are thermodynamically favorable even at lower temperatures, above 200 °C. [Pg.100]

The new specifications not only limit the concentration of sulfur to 0.05% but also specify that the fuel should have the combustion properties of a 10% or lower aromatics-containing fuel and have a minimum cetane number of 40. Fuels that have more than 10% aromatics are now able to meet these specifications through additives (22). However, as smoke emission standards become more restrictive, the aromatics content of diesel fuels may have to be lowered to a true value of 10% or less. A very thorough review of the consequences of this potential problem has recently been written by Stanislaus and Cooper, which covers in detail aromatic hydrocarbon hydroprocessing kinetics, thermodynamics, catalyst compositions, and mechanisms (109). There is little need to repeat the details of that report... [Pg.438]

Scheme 2.2 Kinetics versus thermodynamics catalyst effect. Scheme 2.2 Kinetics versus thermodynamics catalyst effect.
While natural gas reforming is the primary process for the industrial production of H2, the reforming of other gaseous hydrocarbons such as ethane, propane, and n-butane have been explored for the production of H2 for fuel cells.52,97 The reforming of propane and n-butane received particular attention in recent years, because they are the primary constituents of liquefied petroleum gas (LPG), which is available commercially and can be easily transported and stored on-site. LPG could be an attractive fuel for solid oxide fuel cells (SOFCs) and PEMFCs for mobile applications.98 01 The chemistry, thermodynamics, catalysts, kinetics, and reaction mechanism involved in the reforming of C2-C4 hydrocarbons are briefly discussed in this section. [Pg.36]

Everything explained here by the example of water formation applies also to biochemical reactions. The vast majority of them become possible solely through the aid of catalysts, which we call enzymes. Thermodynamically, catalysts lower... [Pg.72]

Olefin Isomerization- a variety of transition metal (RhCl3 H20) catalyst will isomerize doubles bonds to more thermodynamically favorable configurations (i.e. more substituted, trans, conjugated)... [Pg.111]

In an intramolecular aldol condensation of a diketone many products are conceivable, since four different ends can be made. Five- and six-membered rings, however, wUl be formed preferentially. Kinetic or thermodynamic control or different acid-base catalysts may also induce selectivity. In the Lewis acid-catalyzed aldol condensation given below, the more substituted enol is formed preferentially (E.J. Corey, 1963 B, 1965B). [Pg.93]

The initiators which are used in addition polymerizations are sometimes called catalysts, although strictly speaking this is a misnomer. A true catalyst is recoverable at the end of the reaction, chemically unchanged. Tliis is not true of the initiator molecules in addition polymerizations. Monomer and polymer are the initial and final states of the polymerization process, and these govern the thermodynamics of the reaction the nature and concentration of the intermediates in the process, on the other hand, determine the rate. This makes initiator and catalyst synonyms for the same material The former term stresses the effect of the reagent on the intermediate, and the latter its effect on the rate. The term catalyst is particularly common in the language of ionic polymerizations, but this terminology should not obscure the importance of the initiation step in the overall polymerization mechanism. [Pg.349]

The first HCN addition (eq. 3) occurs at practical rates above 70°C under sufficient pressure to keep butadiene condensed in solution and produces the 1,4- and 1,2-addition products (3-pentenenitrile [4635-87-4] 3PN, and 2-meth5i-3-butenenitrile [16529-56-9] 2M3BN) in a 2 to 1 ratio. Fortunately, thermodynamics favors 3PN (about 20 1) and 2M3BN may be isomerized to 3PN (eq. 4) in the presence of a nickel catalyst. [Pg.221]

High molecular weight polymers or gums are made from cyclotrisdoxane monomer and base catalyst. In order to achieve a good peroxide-curable gum, vinyl groups are added at 0.1 to 0.6% by copolymerization with methylvinylcyclosiloxanes. Gum polymers have a degree of polymerization (DP) of about 5000 and are useful for manufacture of fluorosiUcone mbber. In order to achieve the gum state, the polymerization must be conducted in a kineticaHy controlled manner because of the rapid depolymerization rate of fluorosiUcone. The expected thermodynamic end point of such a process is the conversion of cyclotrisdoxane to polymer and then rapid reversion of the polymer to cyclotetrasdoxane [429-67 ]. Careful control of the monomer purity, reaction time, reaction temperature, and method for quenching the base catalyst are essential for rehable gum production. [Pg.400]

These membranes mimic natural photosynthesis except that the electrons are directed to form hydrogen. Several sensitizers and catalysts are needed to complete the cycle, but progress is being made. Various siagle-stage schemes, ia which hydrogen and oxygen are produced separately, have been studied, and the thermodynamic feasibiHty of the chemistry has been experimentally demonstrated. [Pg.19]

Thermodynamically, the formation of methane is favored at low temperatures. The equilibrium constant is 10 at 300 K and is 10 ° at 1000 K (113). High temperatures and catalysts ate needed to achieve appreciable rates of carbon gasification, however. This reaction was studied in the range 820—1020 K, and it was found that nickel catalysts speed the reaction by three to four orders of magnitude (114). The Hterature for the carbon-hydrogen reaction has been surveyed (115). [Pg.417]

Figure 8 shows the characteristic sawtooth temperature profile which represents the thermodynamic inefficiency of this reactor type as deviations from the maximum reaction rate. Catalyst productivity is further reduced because not all of the feed gas passes through all of the catalyst. However, the quench converter has remained the predominant reactor type with a proven record of reflabiUty. [Pg.279]

Stea.m-Ra.ising Converter. There are a variety of tubular steam-raising converters (Fig. 7d) available, which feature radial or axial flow, with the catalyst on either shell or tube side. The near-isothermal operation of this reactor type is the most thermodynamically efficient of the types used, requiring the least catalyst volume. Lower catalyst peak temperatures also result in reduced by-product formation and longer catalyst life. [Pg.280]

Selective Toluene Disproportionation. Toluene disproportionates over ZSM-5 to benzene and a mixture of xylenes. Unlike this reaction over amorphous sihca—alumina catalyst, ZSM-5 produces a xylene mixture with increased -isomer content compared with the thermodynamic equihbtium. Chemical modification of the zeohte causing the pore diameter to be reduced produces catalysts that achieve almost 100% selectivity to -xylene. This favorable result is explained by the greatly reduced diffusivity of 0- and / -xylene compared with that of the less bulky -isomer. For the same reason, large crystals (3 llm) of ZSM-5 produce a higher ratio of -xyleneitotal xylenes than smaller crystahites (28,57). [Pg.458]

Catalysis (qv) refers to a process by which a substance (the catalyst) accelerates an otherwise thermodynamically favored but kiaeticahy slow reaction and the catalyst is fully regenerated at the end of each catalytic cycle (1). When photons are also impHcated in the process, photocatalysis is defined without the implication of some special or specific mechanism as the acceleration of the prate of a photoreaction by the presence of a catalyst. The catalyst may accelerate the photoreaction by interaction with a substrate either in its ground state or in its excited state and/or with the primary photoproduct, depending on the mechanism of the photoreaction (2). Therefore, the nondescriptive term photocatalysis is a general label to indicate that light and some substance, the catalyst or the initiator, are necessary entities to influence a reaction (3,4). The process must be shown to be truly catalytic by some acceptable and attainable parameter. Reaction 1, in which the titanium dioxide serves as a catalyst, may be taken as both a photocatalytic oxidation and a photocatalytic dehydrogenation (5). [Pg.398]

The thermodynamic equilibria are illustrated in Figures 1 and 2. Figure 1 shows the resulting composition after pure pseudocumene or a recycle mixture of C PMBs is disproportionated with a strong Friedel-Crafts catalyst. At 127°C (400 K), the reactor effluent contains approximately 3% toluene, 21% xylenes, 44% C PMBs, 29% C q PMBs, and 3% pentamethylbenzene. The equihbrium composition of the 44% C PMB isomers is shown in Figure 2. Based on the values at 127°C, the distribution is 29.5% mesitylene, 66.0% pseudocumene, and 4.5% hemimellitene (Fig. 2). After separating mesitylene and hemimellitene by fractionation, toluene, xylenes, pseudocumene (recycle plus fresh), C q PMBs, and pentamethylbenzene are recycled to extinction. [Pg.506]

Carbon produced by these latter reactions is formed in the catalyst pores, making it much more difficult to remove, and potentially causing physical breakage. Operating steam to carbon ratios are chosen above the minimum required in order to make carbon formation by these reactions thermodynamically impossible (3). Steam is another potential source of contaminants. Chemicals from the boiler feedwater or the cooling system are poisons to the reformer catalyst, so steam quality must be carefully monitored. [Pg.346]

Many, but not all, reactor configurations are discussed. Process design, catalyst manufacture, thermodynamics, design of experiments (qv), and process economics, as well as separations, the technologies of which often are appHcable to reactor technology, are discussed elsewhere in the Eniyclopedia (see Catalysis Separation Thermodynamics). [Pg.504]

An excess of crotonaldehyde or aUphatic, ahcyhc, and aromatic hydrocarbons and their derivatives is used as a solvent to produce compounds of molecular weights of 1000—5000 (25—28). After removal of unreacted components and solvent, the adduct referred to as polyester is decomposed in acidic media or by pyrolysis (29—36). Proper operation of acidic decomposition can give high yields of pure /n j ,/n7 j -2,4-hexadienoic acid, whereas the pyrolysis gives a mixture of isomers that must be converted to the pure trans,trans form. The thermal decomposition is carried out in the presence of alkaU or amine catalysts. A simultaneous codistillation of the sorbic acid as it forms and the component used as the solvent can simplify the process scheme. The catalyst remains in the reaction batch. Suitable solvents and entraining agents include most inert Hquids that bod at 200—300°C, eg, aUphatic hydrocarbons. When the polyester is spHt thermally at 170—180°C and the sorbic acid is distilled direcdy with the solvent, production and purification can be combined in a single step. The solvent can be reused after removal of the sorbic acid (34). The isomeric mixture can be converted to the thermodynamically more stable trans,trans form in the presence of iodine, alkaU, or sulfuric or hydrochloric acid (37,38). [Pg.283]

C, 0.356—1.069 m H2/L (2000—6000 fU/bbl) of Hquid feed, and a space velocity (wt feed per wt catalyst) of 1—5 h. Operation of reformers at low pressure, high temperature, and low hydrogen recycle rates favors the kinetics and the thermodynamics for aromatics production and reduces operating costs. However, all three of these factors, which tend to increase coking, increase the deactivation rate of the catalyst therefore, operating conditions are a compromise. More detailed treatment of the catalysis and chemistry of catalytic reforming is available (33—35). Typical reformate compositions are shown in Table 6. [Pg.179]

Dehydrogenation of /i-Butane. Dehydrogenation of / -butane [106-97-8] via the Houdry process is carried out under partial vacuum, 35—75 kPa (5—11 psi), at about 535—650°C with a fixed-bed catalyst. The catalyst consists of aluminum oxide and chromium oxide as the principal components. The reaction is endothermic and the cycle life of the catalyst is about 10 minutes because of coke buildup. Several parallel reactors are needed in the plant to allow for continuous operation with catalyst regeneration. Thermodynamics limits the conversion to about 30—40% and the ultimate yield is 60—65 wt % (233). [Pg.347]

Isomerization. Isomerization of any of the butylene isomers to increase supply of another isomer is not practiced commercially. However, their isomerization has been studied extensively because formation and isomerization accompany many refinery processes maximization of 2-butene content maximizes octane number when isobutane is alkylated with butene streams using HF as catalyst and isomerization of high concentrations of 1-butene to 2-butene in mixtures with isobutylene could simplify subsequent separations (22). One plant (Phillips) is now being operated for this latter purpose (23,24). The general topic of isomerization has been covered in detail (25—27). Isomer distribution at thermodynamic equiUbrium in the range 300—1000 Kis summarized in Table 4 (25). [Pg.364]

ButylatedPhenols and Cresols. Butylated phenols and cresols, used primarily as oxidation inhibitors and chain terrninators, are manufactured by direct alkylation of the phenol using a wide variety of conditions and acid catalysts, including sulfuric acid, -toluenesulfonic acid, and sulfonic acid ion-exchange resins (110,111). By use of a small amount of catalyst and short residence times, the first-formed, ortho-alkylated products can be made to predominate. Eor the preparation of the 2,6-substituted products, aluminum phenoxides generated in situ from the phenol being alkylated are used as catalyst. Reaction conditions are controlled to minimise formation of the thermodynamically favored 4-substituted products (see Alkylphenols). The most commonly used is -/ fZ-butylphenol [98-54-4] for manufacture of phenoHc resins. The tert-huty group leaves only two rather than three active sites for condensation with formaldehyde and thus modifies the characteristics of the resin. [Pg.372]

Unsaturated sugars are useful synthetic intermediates (11). The most commonly used are the so-called glycals (1,5- or 1,4-anhydroalditol-l-enes). In the presence of a Lewis-acid catalyst, 3,4,6-tri-0-acetyl-l,5-anhydro-2-deoxy-D-arabinohex-l-enitol [2873-29-2] commonly called D-glucal triacetate, adds nucleophiles in both kineticaHy controlled and thermodynamically controlled (soft bases predominately at C-3 and hard bases primarily at C-1) reactions (11,13). [Pg.482]


See other pages where Thermodynamics catalyst is mentioned: [Pg.113]    [Pg.17]    [Pg.112]    [Pg.305]    [Pg.492]    [Pg.113]    [Pg.17]    [Pg.112]    [Pg.305]    [Pg.492]    [Pg.161]    [Pg.102]    [Pg.271]    [Pg.304]    [Pg.552]    [Pg.552]    [Pg.415]    [Pg.42]    [Pg.490]    [Pg.379]    [Pg.284]    [Pg.209]    [Pg.477]    [Pg.480]    [Pg.481]    [Pg.134]    [Pg.178]    [Pg.342]    [Pg.342]    [Pg.365]   
See also in sourсe #XX -- [ Pg.117 ]




SEARCH



Catalyst thermodynamic parameters

Catalysts thermodynamic properties

Polymer catalyst thermodynamic properties

Thermodynamic parameters polymer catalysts

Thermodynamic properties, single phase catalysts

Thermodynamics continuous catalyst regeneration

© 2024 chempedia.info