Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamic equilibrium, computational kinetics

Nitric oxide has a very low ionization potential and could ionize at flame temperatures. For a normal composite solid propellant containing C—H—O—N—Cl—Al, many more products would have to be considered. In fact if one lists all the possible number of products for this system, the solution to the problem becomes more difficult, requiring the use of advanced computers and codes for exact results. However, knowledge of thermodynamic equilibrium constants and kinetics allows one to eliminate many possible product species. Although the computer codes listed in Appendix I essentially make it unnecessary to eliminate any product species, the following discussion gives one the opportunity to estimate which products can be important without running any computer code. [Pg.17]

ORM assumes that the atmosphere is in local thermodynamic equilibrium this means that the temperature of the Boltzmann distribution is equal to the kinetic temperature and that the source function in Eq. (4) is equal to the Planck function at the local kinetic temperature. This LTE model is expected to be valid at the lower altitudes where kinetic collisions are frequent. In the stratosphere and mesosphere excitation mechanisms such as photochemical processes and solar pumping, combined with the lower collision relaxation rates make possible that many of the vibrational levels of atmospheric constituents responsible for infrared emissions have excitation temperatures which differ from the local kinetic temperature. It has been found [18] that many C02 bands are strongly affected by non-LTE. However, since the handling of Non-LTE would severely increase the retrieval computing time, it was decided to select only microwindows that are in thermodynamic equilibrium to avoid Non-LTE calculations in the forward model. [Pg.341]

The input of the problem requires total analytically measured concentrations of the selected components. Total concentrations of elements (components) from chemical analysis such as ICP and atomic absorption are preferable to methods that only measure some fraction of the total such as selective colorimetric or electrochemical methods. The user defines how the activity coefficients are to be computed (Davis equation or the extended Debye-Huckel), the temperature of the system and whether pH, Eh and ionic strength are to be imposed or calculated. Once the total concentrations of the selected components are defined, all possible soluble complexes are automatically selected from the database. At this stage the thermodynamic equilibrium constants supplied with the model may be edited or certain species excluded from the calculation (e.g. species that have slow reaction kinetics). In addition, it is possible for the user to supply constants for specific reactions not included in the database, but care must be taken to make sure the formation equation for the newly defined species is written in such a way as to be compatible with the chemical components used by the rest of the program, e.g. if the species A1H2PC>4+ were to be added using the following reaction ... [Pg.123]

Forward geochemical modeling. Given an initial water of known composition and a rock of known mineralogy and composition, the rock and water are computationally reacted under a given set of conditions (constant or variable temperature, pressure, and water composition) to produce rock and water (or set of rocks and waters). In forward modeling the products are inferred from an assumed set of conditions (equilibrium or not, phases allowed to precipitate or not, etc.) and thermodynamic and/or kinetic data are necessary. [Pg.2296]

It is important in a mechanistic discussion of stereochemical results to know whether the stereochemistry of products is kinetically or thermodynamically controlled. However, in many reports this point is ignored moreover, only a few reports have mentioned the thermodynamic equilibrium ratio of stereoisomeric products. The former point can be examined not only by experiment but also by computational molecular calculation, but it may not always be easy to determine the ratio. For the latter, much more attention to the stereochemical hterature must be paid by electrochemists engaging in stereochemical studies. [Pg.1054]

Herein, we expand on the discussion of our recently observed isothermal amorphous-amorphous-amorphous transition sequence. We achieved to compress LDA in an isothermal, dilatometric experiment at 125 K in a stepwise fashion via HDA to VHDA. However, we can not distinguish if this stepwise process is a kinetically controlled continuous process or if both steps are true phase transitions (of first or higher order). We want to emphasize that the main focus here is to investigate transitions between different amorphous states at elevated pressures rather than the annealing effects observed at 1 bar. The vast majority of computational studies shows qualitatively similar features in the metastable phase diagram of amorphous water (cf. e.g. Fig.l in ref. 39) at elevated pressures the thermodynamic equilibrium line between HDA and LDA can be reversibly crossed, whereas by heating at 1 bar the spinodal is irreversibly crossed. These two fundamentally different mechanisms need to be scrutinized separately. [Pg.642]

Chemical modeling results for aqueous systems is dependent on the primary thermodynamic and kinetic data needed to perform the calculations. For aqueous equilibrium computations, a large number of thermodynamic properties of solute-solute, solute-gas and solute-solid reactions are available for application to natural waters and other aqueous systems. Unfortunately, an internally consistent thermodynamic data base that is accurate for all modeling objectives, has not been achieved. Nor is it likely to be achieved in the near future. The best that can be hoped for is a tolerable level of inconsistency, with continuing progress toward the utopian goal through national and international consensus. [Pg.398]

Proper answers are rather complex, because different properties and conditions of a chemical system affect both equilibrium and reaction rate. Although the questions are related, no unified quantitative treatment yet exists, and to a large extent they are handled separately by the sciences of thermodynamics and reaction kinetics. Fortunately, with the help of thermodynamic and kinetics, the questions can be answered for many reactions with the aid of data and generalizations obtained by thermal, spectroscopic, and chromatographic measurements, and/or experimental computer chemistry, and the estimation methods of Benson [15]. [Pg.63]

While we are ultimately interested in the chemical kinetics of the system under consideration, we must first consider the thermodynamics. This is important not only because thermodynamic equilibrium constrains the overall system, but also because for each elementary reaction, the forward and reverse reaction rates are related via the equilibrium constant. To compute the equilibrium constant, we must know the Gibbs energy of each species participating in the reaction, at the reaction conditions. However, the Gibbs energy is not usually tabulated directly. Rather, the thermochemical properties are usually specified by the standard enthalpy of formation at 298 K, the standard entropy at 298 K and 1 bar (1 atm in some cases), and the heat capacity as a function of... [Pg.198]

There are in general several steps of refinement to model a gasification system. Zero-dimensional models show the lowest complexity, and rely on empirical correlations or thermodynamic equilibrium calculations. The next step is a onedimensional model that usually requires kinetic expressions either to resolve the space or time coordinate using idealized chemical reactor models. Approaching two- or three-dimensional calculations provokes the use of computational fluid dynamics (CFD) that may incorporate either equiUbriiun or kinetics-based turbulence chemistry interactions. Each step of modeling adds significant complexity and calculation time. [Pg.129]

When the product distribution is thermodynamically determined, the ratios of the C may be determined by equilibrium computations and related to the kinetic parameters by straightforward procedures Multiple stoichiometries are not at all uncommon. The oxidation of permanganate ion by hydrogen peroxide [Eq. (2.5)] is another example. Here, q + tc — v = 6 — 4 = 2, and two independent stoichiometries, from which all others can be constructed, are... [Pg.255]

When the kinetics are unknown, still-useful information can be obtained by finding equilibrium compositions at fixed temperature or adiabatically, or at some specified approach to the adiabatic temperature, say within 25°C (45°F) of it. Such calculations require only an input of the components of the feed and produc ts and their thermodynamic properties, not their stoichiometric relations, and are based on Gibbs energy minimization. Computer programs appear, for instance, in Smith and Missen Chemical Reaction Equilibrium Analysis Theory and Algorithms, Wiley, 1982), but the problem often is laborious enough to warrant use of one of the several available commercial services and their data banks. Several simpler cases with specified stoichiometries are solved by Walas Phase Equilibiia in Chemical Engineering, Butterworths, 1985). [Pg.2077]

For the equihbrium properties and for the kinetics under quasi-equilibrium conditions for the adsorbate, the transfer matrix technique is a convenient and accurate method to obtain not only the chemical potentials, as a function of coverage and temperature, but all other thermodynamic information, e.g., multiparticle correlators. We emphasize the economy of the computational effort required for the application of the technique. In particular, because it is based on an analytic method it does not suffer from the limitations of time and accuracy inherent in statistical methods such as Monte Carlo simulations. The task of variation of Hamiltonian parameters in the process of fitting a set of experimental data (thermodynamic and... [Pg.476]

Thermodynamic and mechanical equilibrium on a curved vapor-liquid interface requires a certain degree of superheat in order to maintain a given curvature. Characteristics of homogeneous and heterogeneous nucleation can be estimated in the frame of classical theory of kinetics of nucleation (Volmer and Weber 1926 Earkas 1927 Becker and Doring 1935 Zel dovich 1943). The vapor temperature in the bubble Ts.b can be computed from equations (Bankoff and Flaute 1957 Cole 1974 Blander and Katz 1975 Li and Cheng 2004) for homogeneous nucleation in superheated liquids... [Pg.261]

Table 10.4 lists the rate parameters for the elementary steps of the CO + NO reaction in the limit of zero coverage. Parameters such as those listed in Tab. 10.4 form the highly desirable input for modeling overall reaction mechanisms. In addition, elementary rate parameters can be compared to calculations on the basis of the theories outlined in Chapters 3 and 6. In this way the kinetic parameters of elementary reaction steps provide, through spectroscopy and computational chemistry, a link between the intramolecular properties of adsorbed reactants and their reactivity Statistical thermodynamics furnishes the theoretical framework to describe how equilibrium constants and reaction rate constants depend on the partition functions of vibration and rotation. Thus, spectroscopy studies of adsorbed reactants and intermediates provide the input for computing equilibrium constants, while calculations on the transition states of reaction pathways, starting from structurally, electronically and vibrationally well-characterized ground states, enable the prediction of kinetic parameters. [Pg.389]

The treatment of chemical reaction equilibria outlined above can be generalized to cover the situation where multiple reactions occur simultaneously. In theory one can take all conceivable reactions into account in computing the composition of a gas mixture at equilibrium. However, because of kinetic limitations on the rate of approach to equilibrium of certain reactions, one can treat many systems as if equilibrium is achieved in some reactions, but not in others. In many cases reactions that are thermodynamically possible do not, in fact, occur at appreciable rates. [Pg.16]


See other pages where Thermodynamic equilibrium, computational kinetics is mentioned: [Pg.250]    [Pg.57]    [Pg.58]    [Pg.288]    [Pg.151]    [Pg.419]    [Pg.86]    [Pg.162]    [Pg.1142]    [Pg.907]    [Pg.1323]    [Pg.447]    [Pg.353]    [Pg.56]    [Pg.31]    [Pg.358]    [Pg.453]    [Pg.1490]    [Pg.268]    [Pg.741]    [Pg.443]    [Pg.902]    [Pg.422]    [Pg.902]    [Pg.1319]    [Pg.105]    [Pg.111]    [Pg.17]    [Pg.180]    [Pg.42]    [Pg.1089]    [Pg.116]   
See also in sourсe #XX -- [ Pg.211 , Pg.212 ]




SEARCH



Equilibrium kinetics

Equilibrium thermodynamics

Kinetic/thermodynamic

Kinetics, thermodynamic equilibrium

Thermodynamic equilibrium, computational

Thermodynamics Equilibrium/equilibria

Thermodynamics, kinetics

© 2024 chempedia.info