Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermocouple example

Not all elements of the industrial thermocouple need to be wine. For example, if a copper pipe contains a flowing fluid whose temperature is to be measured, a constantan wine attached to the pipe will form a T, or copper—constantan, thermocouple. Such arrangements ate difficult to caUbrate and requite full understanding of the possible inherent problems. For example, is the copper pipe fully annealed Homogeneous Pure, or an alloy Many ingenious solutions to specific measurement problems ate given in Reference 6. [Pg.403]

Thermocouples are primarily based on the Seebeck effect In an open circuit, consisting of two wires of different materials joined together at one end, an electromotive force (voltage) is generated between the free wire ends when subject to a temperature gradient. Because the voltage is dependent on the temperature difference between the wires (measurement) junction and the free (reference) ends, the system can be used for temperature measurement. Before modern electronic developments, a real reference temperature, for example, a water-ice bath, was used for the reference end of the thermocouple circuit. This is not necessary today, as the reference can be obtained electronically. Thermocouple material pairs, their temperature-electromotive forces, and tolerances are standardized. The standards are close to each other but not identical. The most common base-metal pairs are iron-constantan (type J), chomel-alumel (type K), and copper-constantan (type T). Noble-metal thermocouples (types S, R, and B) are made of platinum and rhodium in different mixing ratios. [Pg.1138]

This instrument was developed from the hot-wire ammeter, some examples of which can still be found. In the modem equivalent, the current to be measured (or a known proportion of it) flows through a small element that heats a thermocouple, so producing a rms voltage at its terminals, which is a function of the current. This voltage then supplies a current to a permanent magnet, moving-coil movement. [Pg.238]

The impedance of the transducer is important if it provides an output signal to an electronic device (an amplifier, for example) and the impedance of the two must be matched for accurate measurement. Some transducers (thermocouples, for example) generate their output by internal mechanisms (i.e. they are self-excited). Others such as resistance thermometers need an external source and an appropriate type must be available. Transducers used in the measurement of the more common physical quantities are discussed below. [Pg.242]

As examples of properties of systems satisfying the conditions of definiteness at a particular temperature and of reversion, we may refer to the electrical resistance of a metal wire the electromotive force of a thermocouple with a fixed temperature at the cold junction the volume of a homogeneous gaseous, liquid, or... [Pg.2]

The international temperature scale is based upon the assignment of temperatures to a relatively small number of fixed points , conditions where three phases, or two phases at a specified pressure, are in equilibrium, and thus are required by the Gibbs phase rule to be at constant temperature. Different types of thermometers (for example, He vapor pressure thermometers, platinum resistance thermometers, platinum/rhodium thermocouples, blackbody radiators) and interpolation equations have been developed to reproduce temperatures between the fixed points and to generate temperature scales that are continuous through the intersections at the fixed points. [Pg.617]

Thus, if temperatures were being recorded from a thermocouple at 1.00 minute intervals then At= 1.00, and a temperature of, for example, 115°C maintained for 1 minute would give an Fq value of 1 minute x which is equal to 0.251... [Pg.392]

The temperature of a continuous flow of material through a steam-heated stirred tank is controlled by regulating the flow of steam. The tank temperature is measured by a thermocouple set inside a thermowell, giving a delayed temperature measurement response. This example is based on that of Robinson (1975). [Pg.514]

The bluish white, hard, yet ductile, metal is inert to all acids and highly non-abrasive. Used for heavy-duty parts in electrical contacts and spinning jets. Reflectors are prepared from the mirror-smooth surfaces (e.g. head mirrors in medicine). Thin coatings provide a corrosion-resistant protective layer, for example, for jewelry, watches, and spectacle frames. The metal is a constituent of three-way catalysts. Rhodium complexes are used with great success in carbonylations (reactions with CO) and oxidations (nitric acid) in industry. Platinum-rhodium alloys are suitable thermocouples. [Pg.135]

Example Suppose one wants to measure the thermal conductivity of a solid (k). To do this, one needs to measure the heat flux (q), the thickness of the sample (d), and the temperature difference across the sample (AT). Each measurement has some error. The heat flux (q) may be the rate of electrical heat input (< ) divided by the area (A), and both quantities are measured to some tolerance. The thickness of the sample is measured with some accuracy, and the temperatures are probably measured with a thermocouple to some accuracy. These measurements are combined, however, to obtain the thermal conductivity, and it is desired to know the error in the thermal conductivity. The formula is... [Pg.86]

Saito with a fine wire thermocouple embedded at the surface [3]. The scatter in the results are most likely due to the decomposition variables and the accuracy of this difficult measurement. (Note that the surface temperature here is being measured with a thermocouple bead of finite size and having properties dissimilar to wood.) Likewise the properties k. p and c cannot be expected to be equal to values found in the literature for generic common materials since temperature variations in the least will make them change. We expect k and c to increase with temperature, and c to effectively increase due to decomposition, phase change and the evaporation of absorbed water. While we are not modeling all of these effects, we can still use the effective properties of Tig, k, p and c to explain the ignition behavior. For example,... [Pg.166]

There are a number of other types of measurement made in soil that involve electrodes that are not directly in contact with the soil. An example is the thermocouple psychrometer, which involves a Thomson thermocouple in a ceramic cell buried in soil. The thermocouple cools when a current is passed through it, causing water to condense on the thermocouple. When the electricity is turned off, the condensate evaporates at a rate inversely proportional to the relative humidity in the soil. A voltage generated by the cooling junction is measured and related to the soil moisture content. This moisture content is related to both the matrix and osmotic potentials of the soil being investigated. [Pg.206]

Consider temperature as an example. Temperature measurement is needed in a variety of laboratory applications and, in the modern laboratory, is done with a temperature sensor, such as a thermocouple. A thermocouple is a junction of two metals that produces a voltage proportional to temperature that can be measured via electrical connections to the two metals. The voltage difference between the two connections can be amplified by the difference amplifier discussed in Section 6.3.3. [Pg.158]

Fig. 8.9 Typical measurement result. Example of raw data of the thermocouples (left) and the solid mass flux as a function of gas mass flux (right). Fig. 8.9 Typical measurement result. Example of raw data of the thermocouples (left) and the solid mass flux as a function of gas mass flux (right).
As an excellent, simple example of how fluctuating parameters can affect a reacting system, one can examine how the mean rate of a reaction would differ from the rate evaluated at the mean properties when there are no correlations among these properties. In flow reactors, time-averaged concentrations and temperatures are usually measured, and then rates are determined from these quantities. Only by optical techniques or very fast response thermocouples could the proper instantaneous rate values be measured, and these would fluctuate with time. [Pg.216]

It is uncertain to what extent thermal equilibria are achieved in different parts of the flames. — A number of procedures are (in principle) available to determine flame temperatures The immediate measurement, for example by thermocouples, the thermochemical calculation, line reversal methods for electronic excitation temperatures, determination of vibrational or rotational temperatures. In addition more recent methods like advanced Raman techniques may be applied. [Pg.5]

However, for Re < 10 the experimental values of Nu fall sharply with decreasing Reynolds number, well below the theoretical minimum of Nu = 2. This is attributable in part to experimental difficulties, for example fhe problem of measuring particle temperature, and in part to the theoretical interpretation of the data. Botterill (1975) posed the question of what exactly is measured by a bare wire thermocouple inserted in a fluidized bed. Despite the uncertainties in the experimental evidence, Botterill concluded that it probably does indeed measure the particle temperature. This was the assumption of Smith and Nienow (1982) who used bare wire thermocouples to measure bed particle temperatures during fluidized bed granulation. In the region Re < 10, as Kunii and Levenspiel (1991) indicate, the data can be represented by an expression due to Kothari... [Pg.58]

Sensors are distributed equally in various areas of the stability chamber no less than 2 inches from any wall. A set of sensors should be placed near or at the temperature and/or humidity controller of the chamber, as the controller will maintain the set-point temperature and/or humidity within the chamber during normal use. For a typical walk-in chamber, a minimum of 24 thermocouples and six resistance-transmitting devices are recommended for use in the mapping study. For a benchtop or reach-in chamber, a reduced number of sensors may be used. It is important to note that regardless of the size of the chamber, the placement pattern of the sensors should be such that any potential hot or cold spots are mapped, particularly those areas near the door and comers of the chamber. Typical sensor placement patterns for a reach-in and walk-in chamber are shown in Figures 16.1 and 16.2, respectively. In these examples, the extremities of the chamber (i.e., top and bottom) have a larger number of sensors than the middle of the chamber, since these areas would have a greater probability of either hot or cold spots, due to the airflow pattern within the stability chamber. [Pg.247]


See other pages where Thermocouple example is mentioned: [Pg.757]    [Pg.237]    [Pg.659]    [Pg.216]    [Pg.247]    [Pg.239]    [Pg.1076]    [Pg.89]    [Pg.213]    [Pg.215]    [Pg.217]    [Pg.569]    [Pg.186]    [Pg.150]    [Pg.77]    [Pg.225]    [Pg.425]    [Pg.110]    [Pg.158]    [Pg.214]    [Pg.413]    [Pg.120]    [Pg.434]    [Pg.567]    [Pg.81]    [Pg.90]    [Pg.69]    [Pg.9]    [Pg.803]    [Pg.34]   
See also in sourсe #XX -- [ Pg.320 ]




SEARCH



Thermocouple

Thermocoupling

© 2024 chempedia.info