Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Reactants

In describing reactor performance, selectivity is usually a more meaningful parameter than reactor yield. Reactor yield is based on the reactant fed to the reactor rather than on that which is consumed. Clearly, part of the reactant fed might be material that has been recycled rather than fresh feed. Because of this, reactor yield takes no account of the ability to separate and recycle unconverted raw materials. Reactor yield is only a meaningful parameter when it is not possible for one reason or another to recycle unconverted raw material to the reactor inlet. By constrast, the yield of the overall process is an extremely important parameter when describing the performance of the overall plant, as will be discussed later. [Pg.25]

When more than one reactant is used, it is often desirable to use an excess of one of the reactants. It is sometimes desirable to feed an inert material to the reactor or to separate the product partway through the reaction before carrying out further reaction. Sometimes it is desirable to recycle unwanted byproducts to the reactor. Let us now examine these cases. [Pg.34]

Another way to keep the concentration of PRODUCT low is to remove the product as the reaction progresses, e.g., by intermediate separation followed by further reaction. For example, in a reaction system such as Eq. (2.18), intermediate separation of the PRODUCT followed by further reaction maintains a low concentration of PRODUCT as the reaction progresses. Such intermediate separation is most appropriate when separation of the product from the reactants is straightforward. [Pg.39]

A fiowsheet for this part of the vinyl chloride process is shown in Fig. 10.5. The reactants, ethylene and chlorine, dissolve in circulating liquid dichloroethane and react in solution to form more dichloroethane. Temperature is maintained between 45 and 65°C, and a small amount of ferric chloride is present to catalyze the reaction. The reaction generates considerable heat. [Pg.285]

This problem is solved in the reactor shown in Fig. 10.6. Ethylene and chlorine are introduced into circulating liquid dichloroethane. They dissolve and react to form more dichloroethane. No boiling takes place in the zone where the reactants are introduced or in the zone of reaction. As shown in Fig. 10.6, the reactor has a U-leg in which dichloroethane circulates as a result of gas lift and thermosyphon effects. Ethylene and chlorine are introduced at the bottom of the up-leg, which is under sufficient hydrostatic head to prevent boiling. [Pg.286]

The reactants dissolve and immediately begin to react to form further dichloroethane. The reaction is essentially complete at a point only two-thirds up the rising leg. As the liquid continues to rise, boiling begins, and finally, the vapor-liquid mixture enters the disengagement drum. A very slight excess of ethylene ensures essentially 100 percent conversion of chlorine. [Pg.286]

U is essential to specify the physical states of the reactants and products, since there may t>e additional heat changes associated with changes in state. [Pg.201]

Nernst equation This equation relates the e.m.f. of a cell to the concentrations or, more accurately, the activities of the reactants and products of the cell reaction. For a reaction... [Pg.271]

The light producing a photochemical reaction is most commonly absorbed by one of the reactants, but many examples are known where energy absorbed by another species is passed to the reactants this is the phenomenon of photosensitization. [Pg.310]

Table 5.1 gives a sample calculation of the NHVj for toluene, starting from the molar enthalpies of formation of the reactants and products and the enthalpies of changes in state as the case requires. [Pg.181]

The usual situation, true for the first three cases, is that in which the reactant and product solids are mutually insoluble. Langmuir [146] pointed out that such reactions undoubtedly occur at the linear interface between the two solid phases. The rate of reaction will thus be small when either solid phase is practically absent. Moreover, since both forward and reverse rates will depend on the amount of this common solid-solid interface, its extent cancels out at equilibrium, in harmony with the thermodynamic conclusion that for the reactions such as Eqs. VII-24 to VII-27 the equilibrium constant is given simply by the gas pressure and does not involve the amounts of the two solid phases. [Pg.282]

Qualitative examples abound. Perfect crystals of sodium carbonate, sulfate, or phosphate may be kept for years without efflorescing, although if scratched, they begin to do so immediately. Too strongly heated or burned lime or plaster of Paris takes up the first traces of water only with difficulty. Reactions of this type tend to be autocat-alytic. The initial rate is slow, due to the absence of the necessary linear interface, but the rate accelerates as more and more product is formed. See Refs. 147-153 for other examples. Ruckenstein [154] has discussed a kinetic model based on nucleation theory. There is certainly evidence that patches of product may be present, as in the oxidation of Mo(lOO) surfaces [155], and that surface defects are important [156]. There may be catalysis thus reaction VII-27 is catalyzed by water vapor [157]. A topotactic reaction is one where the product or products retain the external crystalline shape of the reactant crystal [158]. More often, however, there is a complicated morphology with pitting, cracking, and pore formation, as with calcium carbonate [159]. [Pg.282]

In the case of reaction VII-28, the reactant and product are mutually soluble. Langmuir argued that in this case, escape of oxygen is easier from bulk Fe203... [Pg.282]

The kinetics of reactions in which a new phase is formed may be complicated by the interference of that phase with the ease of access of the reactants to each other. This is the situation in corrosion and tarnishing reactions. Thus in the corrosion of a metal by oxygen the increasingly thick coating of oxide that builds up may offer more and more impedance to the reaction. Typical rate expressions are the logarithmic law,... [Pg.283]

The sequence of events in a surface-catalyzed reaction comprises (1) diffusion of reactants to the surface (usually considered to be fast) (2) adsorption of the reactants on the surface (slow if activated) (3) surface diffusion of reactants to active sites (if the adsorption is mobile) (4) reaction of the adsorbed species (often rate-determining) (5) desorption of the reaction products (often slow) and (6) diffusion of the products away from the surface. Processes 1 and 6 may be rate-determining where one is dealing with a porous catalyst [197]. The situation is illustrated in Fig. XVIII-22 (see also Ref. 198 notice in the figure the variety of processes that may be present). [Pg.720]

Process 2, the adsorption of the reactant(s), is often quite rapid for nonporous adsorbents, but not necessarily so it appears to be the rate-limiting step for the water-gas reaction, CO + HjO = CO2 + H2, on Cu(lll) [200]. On the other hand, process 4, the desorption of products, must always be activated at least by Q, the heat of adsorption, and is much more apt to be slow. In fact, because of this expectation, certain seemingly paradoxical situations have arisen. For example, the catalyzed exchange between hydrogen and deuterium on metal surfaces may be quite rapid at temperatures well below room temperature and under circumstances such that the rate of desorption of the product HD appeared to be so slow that the observed reaction should not have been able to occur To be more specific, the originally proposed mechanism, due to Bonhoeffer and Farkas [201], was that of Eq. XVIII-32. That is. [Pg.720]

The desire to understand catalytic chemistry was one of the motivating forces underlying the development of surface science. In a catalytic reaction, the reactants first adsorb onto the surface and then react with each other to fonn volatile product(s). The substrate itself is not affected by the reaction, but the reaction would not occur without its presence. Types of catalytic reactions include exchange, recombination, unimolecular decomposition, and bimolecular reactions. A reaction would be considered to be of the Langmuir-Hinshelwood type if both reactants first adsorbed onto the surface, and then reacted to fonn the products. If one reactant first adsorbs, and the other then reacts with it directly from the gas phase, the reaction is of the Eley-Ridel type. Catalytic reactions are discussed in more detail in section A3.10 and section C2.8. [Pg.302]

A tremendous amount of work has been done to delineate the detailed reaction mechanisms for many catalytic reactions on well characterized surfaces [1, 45]. Many of tiiese studies involved impinging molecules onto surfaces at relatively low pressures, and then interrogating the surfaces in vacuum with surface science teclmiques. For example, a usefiil technique for catalytic studies is TPD, as the reactants can be adsorbed onto the sample in one step, and the products fonned in a second step when the sample is heated. Note that catalytic surface studies have also been perfonned by reacting samples in a high-pressure cell, and then returning them to vacuum for measurement. [Pg.302]

For example, the expansion of a gas requires the release of a pm holding a piston in place or the opening of a stopcock, while a chemical reaction can be initiated by mixing the reactants or by adding a catalyst. One often finds statements that at equilibrium in an isolated system (constant U, V, n), the entropy is maximized . Wliat does this mean ... [Pg.337]

It is convenient to define a relative activity a. in tenns of the standard states of the reactants and products at the same temperature and pressure, where Aj = fi, =... [Pg.363]

AH, A.S or AG is known at a specified temperature T, say 298 K, its value at another temperature T can be computed using this value and the changes involved m bringing the products and the reactants separately from T to T. If these measurements can be extrapolated to 0 K, the isothennal changes for the reaction at 0 K can be calculated. [Pg.369]

If one of the reactants is present in large excess its concentration will essentially remain constant... [Pg.768]

A bimoleciilar reaction can be regarded as a reactive collision with a reaction cross section a that depends on the relative translational energy of the reactant molecules A and B (masses and m ). The specific rate constant k(E ) can thus fonnally be written in tenns of an effective reaction cross section o, multiplied by the relative centre of mass velocity... [Pg.776]


See other pages where The Reactants is mentioned: [Pg.28]    [Pg.29]    [Pg.47]    [Pg.47]    [Pg.53]    [Pg.263]    [Pg.276]    [Pg.47]    [Pg.149]    [Pg.161]    [Pg.196]    [Pg.202]    [Pg.202]    [Pg.205]    [Pg.251]    [Pg.272]    [Pg.281]    [Pg.311]    [Pg.367]    [Pg.370]    [Pg.373]    [Pg.401]    [Pg.402]    [Pg.412]    [Pg.181]    [Pg.151]    [Pg.152]    [Pg.284]   


SEARCH



ATR Reactor Setup Influence of Preheating the Reactants

Changing the Reactant Structure to Divert or Trap a Proposed Intermediate

Chemical equilibrium A dynamic reaction system in which the concentrations of all reactants and products remain constant

Concentrations of Reactants The Rate-Law Expression

Diffusivity of the reactant molecule

Effect of Preheating the Reactants

Electrode Reactions Complicated by Adsorption of the Reactant and Product

Estimation of Kinetic Parameters for the Reaction between Reactants A and

How does the surface area of a solid reactant affect percent yield

Limiting Reactants The Problem

Limiting reactant determining the

Limiting-reactant problem using the ideal gas law

Nature of the reactants

PFR with Continuous Uniform Feed of Reactant along the Whole Reactor

Particle size of the reactants

Processes Caused by Photoexcitation of Reactants in the Solution

Pyrolysis in the Presence of Additional Reactants or with Catalysts

Reactant The starting substance

Reactant in the Gas Phase

Reactants with the Medium

Restricted Mobility of the Reactants

The Barrier between Reactants and Products

The Concentration of Reactants in Each Phase is Affected by Diffusion

The Concept of Limiting Reactants

The Environment as a Reactant

The Key Event Movement of Electrons Between Reactants

The Limiting Reactant

The Relation Between Reactant Concentration and Time

The Retention Mechanism of Reactants on Graphite

The Temperature Distribution in Powder Reactants

The general rate law expression for reactions with several reactants

The initial solid is a single reactant

The mutual distribution of reactants

The reactant state distribution

The reactant-product equilibrium

Transition Probability for Fixed Coordinates of the Ions and Reactants

© 2024 chempedia.info