Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The proteases

Permeation enhancers are used to improve absorption through the gastric mucosa. Eor example, oral dehvery of insulin (mol wt = 6000) has been reported from a water-in-oH- emulsion containing lecithin, nonesterified fatty acids, cholesterol [57-88-5], and the protease inhibitor aprotinin [9087-70-1] (23). [Pg.141]

An example of a direct spectrophotometrical assay is the use of synthetic peptide -nitroanilide substrates to determine protease activity. The /)-nitroani1ine group Hberated from the substrates by the protease can be determined spectrophotometricaHy at 410 nm. An example of an indirect (coupled) spectrophotometric assay is the determination of a-amylase using -nitrophenyLmaltoheptaoside. Initially, the substrate is cleaved by the a-amylase and subsequentiy one of the reaction products, -nitrophenyLmaltotrioside, is cleaved by a-glucosidase, hberating -nitrophenyl, a chromophore... [Pg.288]

Bromelain (anti-inflammatory Ananase from pineapple) [37189-34-7] Mr 33 000, [EC 3.4.33.4]. This protease has been purified via the acetone powder, G-75 Sephadex gel filtration and Bio-Rex 70 ion-exchange chromatography and has Aj 20.1 at 280nm. The protease from pineapple hydrolyses benzoyl glycine ethyl ester with a Km (app) of 210mM and kcat of 0.36 sec. [Murachi Methods Enzymol 19 273 1970 Balls et al. nd Eng Chem 33 950 1941.]... [Pg.517]

Chirazymes. These are commercially available enzymes e.g. lipases, esterases, that can be used for the preparation of a variety of optically active carboxylic acids, alcohols and amines. They can cause regio and stereospecific hydrolysis and do not require cofactors. Some can be used also for esterification or transesterification in neat organic solvents. The proteases, amidases and oxidases are obtained from bacteria or fungi, whereas esterases are from pig liver and thermophilic bacteria. For preparative work the enzymes are covalently bound to a carrier and do not therefore contaminate the reaction products. Chirazymes are available form Roche Molecular Biochemicals and are used without further purification. [Pg.520]

X-ray crystallographic studies of serine protease complexes with transition-state analogs have shown how chymotrypsin stabilizes the tetrahedral oxyanion transition states (structures (c) and (g) in Figure 16.24) of the protease reaction. The amide nitrogens of Ser and Gly form an oxyanion hole in which the substrate carbonyl oxygen is hydrogen-bonded to the amide N-H groups. [Pg.519]

Candidate protease inhibitor drugs must be relatively specific for the HIV-1 protease. Many other aspartic proteases exist in the human body and are essential to a variety of body functions, including digestion of food and processing of hormones. An ideal drug thus must strongly inhibit the HIV-1 protease, must be delivered effectively to the lymphocytes where the protease must be blocked, and should not adversely affect the activities of the essential human aspartic proteases. [Pg.524]

A final but important consideration is viral mutation. Certain mutant HIV strains are resistant to one or more of the protease inhibitors, and even for patients who respond initially to protease inhibitors it is possible that mutant viral forms may eventually thrive in the infected individual. The search for new and more effective protease inhibitors is ongoing. [Pg.524]

In the first publication describing the preparative use of an enzymatic reaction in ionic liquids, Erbeldinger et al. reported the use of the protease thermolysin for the synthesis of the dipeptide Z-aspartame (Entry 6) [34]. The reaction rates were comparable to those found in conventional organic solvents such as ethyl acetate. Additionally, the enzyme stability was increased in the ionic liquid. The ionic liquid was recycled several times after the removal of non-converted substrates by extraction with water and product precipitation. Recycling of the enzyme has not been reported. It should be noted, however, that according to the log P concept described in the previous section, ethyl acetate - with a value of 0.68 - may interfere with the pro-... [Pg.339]

The protease a-chymotrypsin has been used for transesterification reactions by two groups (Entries 7 and 8) [35, 36]. N-Acetyl-l-phenylalanine ethyl ester and N-acetyl-l-tyrosine ethyl ester were transformed into the corresponding propyl esters (Scheme 8.3-2). [Pg.341]

Husum et al. found that the hydrolytic activities of P-galactosidase from E. coli and the protease subtilisin in a 50 % aqueous solution of the water-miscible ionic liquid [BMIM][Bp4] were comparable to those in 50 % aqueous solutions of ethanol or acetonitrile (Entry 9) [37]. [Pg.342]

In a first report [24], the enantioselectivities of various proteases were evaluated by comparing the biocatalyzedhydrolysis of2-chloroethyl esters of N-acetyl-i- and D-amino acids in water and their transesterification with w-propanol in butyl ether. By comparing the ratio of the kc t/Ku values for the l- and D-enantiomers in the two reactions, a remarkable relation of the proteases enantioselectivity was observed apparently, in this case, the organic solvents destroyed the selectivity of the tested enzymes. This finding... [Pg.9]

Table 1.3 Influence ofthe organic solvent on the enantioselectivity of the protease subtilisin in the kinetic resolution ofthe racemic amine (9) (expressed as the ratio ofthe initial rate of acylation of the pure enatiomers, Vs/vr). Table 1.3 Influence ofthe organic solvent on the enantioselectivity of the protease subtilisin in the kinetic resolution ofthe racemic amine (9) (expressed as the ratio ofthe initial rate of acylation of the pure enatiomers, Vs/vr).
Later on the crucial role played by the solvent was enlightened in the protease-catalyzed resolution of racemic amines [26]. As shown in Table 1.3, the ratio of the initial rates of acylation of the (S)- and the (Ji)-enantiomers or racemic a-methyl-benzylamine (9) varied from nearly 1 in toluene to 7.7 in 3-methyl-3-pentanol. Similarly, the same authors found a significant solvent effect for the subtilisin-catalyzed transesterification of racemic 1-phenylethanol (10) using vinyl butyrate as acyl donor (Table 1.4 [27]). [Pg.10]

A distinctive feature of the protease is the presence of a mobile beta turn in each subunit, which serves as a flap covering the active site. For substrate to get access to the active site, the flaps have to move away in what must be an ongoing dynamic... [Pg.87]


See other pages where The proteases is mentioned: [Pg.249]    [Pg.26]    [Pg.33]    [Pg.20]    [Pg.286]    [Pg.290]    [Pg.302]    [Pg.309]    [Pg.2065]    [Pg.131]    [Pg.278]    [Pg.522]    [Pg.522]    [Pg.523]    [Pg.524]    [Pg.524]    [Pg.199]    [Pg.311]    [Pg.328]    [Pg.363]    [Pg.1231]    [Pg.1284]    [Pg.1286]    [Pg.13]    [Pg.42]    [Pg.183]    [Pg.185]    [Pg.20]    [Pg.29]    [Pg.29]    [Pg.33]    [Pg.34]    [Pg.34]    [Pg.44]    [Pg.86]    [Pg.87]    [Pg.88]   


SEARCH



Activation of proteases via the cysteine switch

Characterization of an unstable process impurity in the protease inhibitor Tipranavir

Look up the names of both individual drugs and their drug groups to access full information HIV-protease inhibitors

Look up the names of both individual drugs and their drug groups to access full information Protease inhibitors

Protease Inhibitors that Bind to One Side of the Active Site

The Aspartic Proteases

The DegP Protease Chaperone A Molecular Cage with Bouncers

The Use of Other Acidic Proteases After Expression or Extraction

The Use of Other Commercially Available Proteases

The cysteine proteases

The serine proteases

The zinc proteases

© 2024 chempedia.info