Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The solid-liquid interface

The liquid-solid interface, which is the interface that is involved in many chemical and enviromnental applications, is described m section A 1.7.6. This interface is more complex than the solid-vacuum interface, and can only be probed by a limited number of experimental techniques. Thus, obtaining a fiindamental understanding of its properties represents a challenging frontier for surface science. [Pg.284]

One of tlie less explored frontiers in atomic-scale surface science is the study of the liquid-solid interface. [Pg.314]

This interface is critically important in many applications, as well as in biological systems. For example, the movement of pollutants tln-ough the enviromnent involves a series of chemical reactions of aqueous groundwater solutions with mineral surfaces. Although the liquid-solid interface has been studied for many years, it is only recently that the tools have been developed for interrogating this interface at the atomic level. This interface is particularly complex, as the interactions of ions dissolved in solution with a surface are affected not only by the surface structure, but also by the solution chemistry and by the effects of the electrical double layer [31]. It has been found, for example, that some surface reconstructions present in UHV persist under solution, while others do not. [Pg.314]

Studies of the liquid-solid interface can be divided into those that are perfonned ex situ and those perfomied in situ. In an ex situ experiment, a surface is first reacted in solution, and then removed from the solution and transferred into a UFIV spectrometer for measurement. There has recently been, however, much work aimed at interrogating the liquid-solid interface in situ, i.e. while chemistry is occurring rather than after the fact. [Pg.314]

Figure Al.7.14. 3.4 mn x 3.4 mn STM images of 1-docosanol physisorbed onto a graphite surface in solution. This image reveals the hydrogen-bonding alcohol molecules assembled in lamellar fashion at the liquid-solid interface. Each bright circular region is attributed to the location of an individual hydrogen... Figure Al.7.14. 3.4 mn x 3.4 mn STM images of 1-docosanol physisorbed onto a graphite surface in solution. This image reveals the hydrogen-bonding alcohol molecules assembled in lamellar fashion at the liquid-solid interface. Each bright circular region is attributed to the location of an individual hydrogen...
Cyr D M, Venkataraman B and Flynn G W 1996 STM investigations of organic molecules physisorbed at the liquid-solid interface Chem. Mater. 8 1600... [Pg.320]

Yackoboski K, Yeo Y H, McGonigal G C and Thomson D J 1992 Molecular position at the liquid/solid interface measured by voltage-dependent imaging with the STM Ultramicroscopy 42-44 963... [Pg.1721]

Conduction with Change of Phase A special type of transient problem (the Stefan problem) involves conduction of heat in a material when freezing or melting occurs. The liquid-solid interface moves with time, and in addition to conduction, latent heat is either generated or absorbed at the interface. Various problems of this type are discussed by Bankoff [in Drew et al. (eds.). Advances in Chemical Engineering, vol. 5, Academic, New York, 1964]. [Pg.557]

Heat transfer by nucleate boiling is an important mechanism in the vaporization of liqmds. It occurs in the vaporization of liquids in kettle-type and natural-circulation reboilers commonly usea in the process industries. High rates of heat transfer per unit of area (heat flux) are obtained as a result of bubble formation at the liquid-solid interface rather than from mechanical devices external to the heat exchanger. There are available several expressions from which reasonable values of the film coefficients may be obtained. [Pg.568]

In many important cases of reactions involving gas, hquid, and solid phases, the solid phase is a porous catalyst. It may be in a fixed bed or it may be suspended in the fluid mixture. In general, the reaction occurs either in the liquid phase or at the liquid/solid interface. In fixed-bed reactors the particles have diameters of about 3 mm (0.12 in) and occupy about 50 percent of the vessel volume. Diameters of suspended particles are hmited to O.I to 0.2 mm (0.004 to 0.008 in) minimum by requirements of filterability and occupy I to 10 percent of the volume in stirred vessels. [Pg.2118]

The major difference of the water structure between the liquid/solid and the liquid/liquid interface is due to the roughness of the liquid mercury surface. The features of the water density profiles at the liquid/liquid interface are washed out considerably relative to those at the liquid/solid interface [131,132]. The differences between the liquid/solid and the liquid/liquid interface can be accounted for almost quantitatively by convoluting the water density profile from the Uquid/solid simulation with the width of the surface layer of the mercury density distribution from the liquid/liquid simulation [66]. [Pg.362]

Mass transfer across the liquid-solid interface in mechanically agitated liquids containing suspended solid particles has been the subject of much research, and the data obtained for these systems are probably to some extent applicable to systems containing, in addition, a dispersed gas phase. Liquid-solid mass transfer in such systems has apparently not been studied separately. Recently published studies include papers by Calderbank and Jones (C3), Barker and Treybal (B5), Harriott (H4), and Marangozis and Johnson (M3, M4). Satterfield and Sherwood (S2) have reviewed this subject with specific reference to applications in slurry-reactor analysis and design. [Pg.122]

No work on mass transfer across the liquid-solid interface in gas-liquid fluidized beds has come to the author s attention. [Pg.126]

Date for mass transfer across the liquid-solid interface are virtually nonexistent for packed-bed gas-liquid-particle operations. The smaller particle size that may be employed in suspended-bed operations should be an advantage in this respect, but the packed-bed operations have, on the other hand, the advantage of having higher possible relative velocities between liquid and solid. [Pg.131]

Section 8 deals with reactions which occur at gas—solid and solid—solid interfaces, other than the degradation of solid polymers which has already been reviewed in Volume 14A. Reaction at the liquid—solid interface (and corrosion), involving electrochemical processes outside the coverage of this series, are not considered. With respect to chemical processes at gas-solid interfaces, it has been necessary to discuss surface structure and adsorption as a lead-in to the consideration of the kinetics and mechanism of catalytic reactions. [Pg.348]

Rubber swelling modifies the liquid/solid work of adhesion. Wo, because in addition to the initial liquid/solid interactions, liquid diffusion into the solid produces supplementary liquid/liquid interactions, hquid molecules having passed through the liquid/solid interface. Therefore, to the initial work of adhesion in the absence of swelling, Wq, an additional term corresponding to a fraction of the cohesion energy of the liquid, 2y, should be added. If / is the time of diffusion, the work of adhesion at /, Wo(t), can then be expressed as... [Pg.300]

To evaluate the time-dependent function, X(t), a simple model of diffusion is proposed. Starting from Langmuir adsorption theory, we consider that liquid molecules having diffused into the elastomer are localized on discrete sites (which might be free volume domains). In these conditions, we can deduce the rate of occupation of these sites by TCP with time. Only the filhng of the first layer of the sites situated below the liquid/solid interface at a distance of the order of the length of intermolecular interaction, i.e., a few nanometers, needs to be considered to estimate X(t). [Pg.300]

The effects of transfer of atoms by tunneling may play an essential role in a number of phenomena involving the transfer of atoms and atomic groups in the condensed phase. One may expect that these effects may exist not only in the proton transfer reactions considered above but also in such processes as the diffusion of hydrogen atoms and other light ions (e.g., Li+) in liquids, tunnel inversion and isomerization in some molecules, quantum diffusion of defects and light atoms in the electrode at cathodic incorporation of the ions, ion transfer across the liquid/solid interface, and low-temperature chemical reactions. [Pg.142]

The rather low coordination in the (100) and (110) surfaces will clearly lead to some instability and it is perhaps not surprising that the ideal surface structures shown in Figure 1.2 are frequently found in a rather modified form in which the structure changes to increase the coordination number. Thus, the (100) surfaces of Ir, Pt and Au all show a topmost layer that is close-packed and buckled, as shown in Figure 1.3, and the (110) surfaces of these metals show a remarkable reconstruction in which one or more alternate rows in the <001 > direction are removed and the atoms used to build up small facets of the more stable (111) surface, as shown in Figure 1.4, These reconstructions have primarily been characterised on bare surfaces under high-vacuum conditions and it is of considerable interest and importance to note that chemisorption on such reconstructed surfaces can cause them to snap back to the unreconstructed form even at room temperature. Recently, it has also been shown that reconstructions at the liquid-solid interface also... [Pg.10]

The existence of active sites on surfaces has long been postulated, but confidence in the geometric models of kink and step sites has only been attained in recent years by work on high index surfaces. However, even a lattice structure that is unreconstructed will show a number of random defects, such as vacancies and isolated adatoms, purely as a result of statistical considerations. What has been revealed by the modern techniques described in chapter 2 is the extraordinary mobility of surfaces, particularly at the liquid-solid interface. If the metal atoms can be stabilised by coordination, very remarkable atom mobilities across the terraces are found, with reconstruction on Au(100), for example, taking only minutes to complete at room temperature in chloride-containing electrolytes. It is now clear that the... [Pg.11]

Parfitt, G. D. Rochester, C. H. "Adsorption from Solution at the Liquid/Solid Interface," Academic Press, New York, 1983. [Pg.521]

Fig. 1. The hypothetical balance of forces at the 3-phase line. The surface tension 7S of the solid (shaded) is supposed to be equal to the sum 7sj + 7 cos 0 7sj is the tension along the liquid - solid interface, 7 is surface tension of the liquid, and 0 is the contact angle... Fig. 1. The hypothetical balance of forces at the 3-phase line. The surface tension 7S of the solid (shaded) is supposed to be equal to the sum 7sj + 7 cos 0 7sj is the tension along the liquid - solid interface, 7 is surface tension of the liquid, and 0 is the contact angle...
Fig. 19. The extent of the liquid - solid interface, as long as this is plane, has no effect on solubility. When the small solid 1, in a conical container, dissolves, its interface with the solvent increases. When a material is deposited on the large solid 2, the surface area of the latter decreases... Fig. 19. The extent of the liquid - solid interface, as long as this is plane, has no effect on solubility. When the small solid 1, in a conical container, dissolves, its interface with the solvent increases. When a material is deposited on the large solid 2, the surface area of the latter decreases...
The Liquid/Solid Interface at High Resolution, The Royal Society of Chemistry, London, 1992. [Pg.296]

N. Batina, T. Will, and D. M. Kolb, The Liquid/Solid Interface at High Resolution, The Royal Society of Chemistry, London, 1992, p. 93. [Pg.303]


See other pages where The solid-liquid interface is mentioned: [Pg.377]    [Pg.314]    [Pg.315]    [Pg.316]    [Pg.438]    [Pg.182]    [Pg.138]    [Pg.200]    [Pg.118]    [Pg.87]    [Pg.52]    [Pg.239]    [Pg.91]    [Pg.695]    [Pg.149]    [Pg.50]    [Pg.727]    [Pg.4]    [Pg.1422]    [Pg.168]    [Pg.128]    [Pg.61]    [Pg.63]    [Pg.65]   


SEARCH



Solid Interface

Solid-liquid interface

The Interface

© 2024 chempedia.info