Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The interaction potential

Jackson and Mott25 solved equation (7), with the interaction potential [Pg.196]

The occurrence of a closed solution for this particular function is of great importance, and results in a remarkably simple set of final equations. [Pg.196]

In Section 3.6 below, it is shown that provided / is very large compared to the vibrational amplitude (which usually holds), the diagonal elements Vm s l.T Equations (7) and (8) then take the forms [Pg.197]

Equation (11) can then be solved by letting F,(x) denote the solution of the equation [Pg.197]

The probability of vibration excitation per collision, for the particular velocity corresponding to k0, is therefore [Pg.198]


Fig. VI-5. The effect of electrolyte concentration on the interaction potential energy between two spheres where K is k in cm". (From Ref. 44.)... Fig. VI-5. The effect of electrolyte concentration on the interaction potential energy between two spheres where K is k in cm". (From Ref. 44.)...
From the data in Problem 13, calculate the interaction potential energy between... [Pg.250]

Some studies have been made of W/O emulsions the droplets are now aqueous and positively charged [40,41 ]. Albers and Overbeek [40] carried out calculations of the interaction potential not just between two particles or droplets but between one and all nearest neighbors, thus obtaining the variation with particle density or . In their third paper, these authors also estimated the magnitude of the van der Waals long-range attraction from the shear gradient sufficient to detach flocculated droplets (see also Ref. 42). [Pg.508]

There are many large molecules whose mteractions we have little hope of detemiining in detail. In these cases we turn to models based on simple mathematical representations of the interaction potential with empirically detemiined parameters. Even for smaller molecules where a detailed interaction potential has been obtained by an ab initio calculation or by a numerical inversion of experimental data, it is usefid to fit the calculated points to a functional fomi which then serves as a computationally inexpensive interpolation and extrapolation tool for use in fiirtlier work such as molecular simulation studies or predictive scattering computations. There are a very large number of such models in use, and only a small sample is considered here. The most frequently used simple spherical models are described in section Al.5.5.1 and some of the more common elaborate models are discussed in section A 1.5.5.2. section Al.5.5.3 and section Al.5.5.4. [Pg.204]

A more natural way to account for the anisotropy is to treat tire parairreters in an interatomic potential, such as equation (A 1.5.64). as fiurctioirs of the relative orientation of the interacting molecules. Comer [131] was perhaps the first to use such an approach. Pack [132] pointed out that Legendre expansions of the well depth e and equilibrium location of the interaction potential converge more rapidly tirair Legendre expansions of the potential itself... [Pg.208]

When an atom or molecule approaches a surface, it feels an attractive force. The interaction potential between the atom or molecule and the surface, which depends on the distance between the molecule and the surface and on the lateral position above the surface, detemiines the strength of this force. The incoming molecule feels this potential, and upon adsorption becomes trapped near the minimum m the well. Often the molecule has to overcome an activation barrier, before adsorption can occur. [Pg.295]

McMillan-Mayer theory of solutions [1,2], which essentially seeks to partition the interaction potential into tln-ee parts that due to the interaction between the solvent molecules themselves, that due to die interaction between the solvent and the solute and that due to the interaction between the solute molecules dispersed within the solvent. The main difference from the dilute fluid results presented above is that the potential energy u(r.p is replaced by the potential of mean force W(rp for two particles and, for particles of solute in the solvent, by the expression... [Pg.564]

A number of improvements to the Bom approximation are possible, including higher order Born approximations (obtained by inserting lower order approximations to i jJ into equation (A3.11.40). then the result into (A3.11.41) and (A3.11.42)), and the distorted wave Bom approximation (obtained by replacing the free particle approximation for the solution to a Sclirodinger equation that includes part of the interaction potential). For chemical physics... [Pg.968]

The present derivation can easily be generalized to systems with an arbitrary number of internal degrees of freedom, and it leads to coupled channel equations identical with equation (A3.11.63). where the coupling temis (A3.11.62) are expressed as matrix elements of the interaction potential using states which depend on these internal degrees of... [Pg.973]

Direct measurement of the interaction potential between tethered ligand (biotin) and receptor (streptavidin) have been reported by Wong et al [16] and demonstrate the possibility of controlling range and dynamics of specific biologic interactions via a flexible PEG-tether. [Pg.1742]

Rare-gas clusters can be produced easily using supersonic expansion. They are attractive to study theoretically because the interaction potentials are relatively simple and dominated by the van der Waals interactions. The Lennard-Jones pair potential describes the stmctures of the rare-gas clusters well and predicts magic clusters with icosahedral stmctures [139, 140]. The first five icosahedral clusters occur at 13, 55, 147, 309 and 561 atoms and are observed in experiments of Ar, Kr and Xe clusters [1411. Small helium clusters are difficult to produce because of the extremely weak interactions between helium atoms. Due to the large zero-point energy, bulk helium is a quantum fluid and does not solidify under standard pressure. Large helium clusters, which are liquid-like, have been produced and studied by Toennies and coworkers [142]. Recent experiments have provided evidence of... [Pg.2400]

One starts with the Hamiltonian for a molecule H r, R) written out in terms of the electronic coordinates (r) and the nuclear displacement coordinates (R, this being a vector whose dimensionality is three times the number of nuclei) and containing the interaction potential V(r, R). Then, following the BO scheme, one can write the combined wave function [ (r, R) as a sum of an infinite number of terms... [Pg.145]

In most real life applications, the evaluation of the forces acting on the classical particles (i.e., the evaluation of the gradient of the interaction potential) is by far the most expensive operation due to the large number of classical degrees of freedom. Therefore we will concentrate on numerical techniques which try to minimize the number of force evaluations. [Pg.399]

Eor ease of presentation only, we here consider the case of two particles having spatial coordinates x and y, and masses m and M, with m interaction potential V x, y), the quantum Hamiltonian H is given by... [Pg.426]

The interaction potential (R) describes both bonding and non-bon ding in teraction s. Th e bon dm g interactions arc u snally form u -lated as a strain energy that is zero at some ideal configuration of the atoms and describe how the energy increases as the ideal con-figu ration is deform ed. Don d in g in teraction s ii su ally refer to atom s in the following relationships ... [Pg.174]

The interaction potential V(R) in used by the force fields in HyperChem share the following types of terms ... [Pg.174]

Here 0p and 0 correspond to the terms in r" and respectively in Equation (1.8) as already pointed out, these contributions are always present, whereas the electrostatic energies 0, and may or may not be present according to the nature of the adsorbent and the adsorptive. In principle. Equation (1.16) could be used to calculate the numerical value of the interaction potential as a function of the distance z of any given molecule from the surface of a chosen solid. In practice, however, the scope has to be limited to systems composed of a simple type of gas molecule and... [Pg.7]

The state of the surface is now best considered in terms of distribution of site energies, each of the minima of the kind indicated in Fig. 1.7 being regarded as an adsorption site. The distribution function is defined as the number of sites for which the interaction potential lies between and (rpo + d o)> various forms of this function have been proposed from time to time. One might expect the form ofto fio derivable from measurements of the change in the heat of adsorption with the amount adsorbed. In practice the situation is complicated by the interaction of the adsorbed molecules with each other to an extent depending on their mean distance of separation, and also by the fact that the exact proportion of the different crystal faces exposed is usually unknown. It is rarely possible, therefore, to formulate the distribution function for a given solid except very approximately. [Pg.20]

The basis of the classification is that each of the size ranges corresponds to characteristic adsorption effects as manifested in the isotherm. In micropores, the interaction potential is significantly higher than in wider pores owing to the proximity of the walls, and the amount adsorbed (at a given relative pressure) is correspondingly enhanced. In mesopores, capillary condensation, with its characteristic hysteresis loop, takes place. In the macropore range the pores are so wide that it is virtually impossible to map out the isotherm in detail because the relative pressures are so close to unity. [Pg.25]

The lower pressure sub-region is characterized by a considerable enhancement of the interaction potential (Chapter 1) and therefore of the enthalpy of adsorption consequently the pore becomes completely full at very low relative pressure (sometimes 0 01 or less), so that the isotherm rises steeply from the origin. This behaviour is observed with molecular sieve zeolites, the enhancement of the adsorption energy and the steepness of the isotherm being dependent on the nature of the adsorbent-adsorbate interaction and the polarizability of the adsorbate. -... [Pg.242]

Extensive computer simulations have been caiTied out on the near-surface and surface behaviour of materials having a simple cubic lattice structure. The interaction potential between pairs of atoms which has frequently been used for inert gas solids, such as solid argon, takes die Lennard-Jones form where d is the inter-nuclear distance, is the potential interaction energy at the minimum conesponding to the point of... [Pg.199]

Since only one molecule is added to (or removed from) the system, U is simply the interaction of the added (or removed) molecule with the remaining ones. If one attempts to add a new molecule, N is the number of molecules after addition, otherwise it is the number of molecules prior to removal. If a cutoff for the interaction potential is employed, long-range corrections to must be taken into account because of the density change of /As. Analytic expressions for these corrections can be found in the appendix of Ref. 33. [Pg.26]

The simplest choice for the interaction potentials between the particles (at distance r) is the assumption of Lennard-Jones pair potentials,... [Pg.83]

A parameterization of many different surface potentials, ranging from (100) surfaces of FCC crystals to graphite surfaces, has been given by Steele [146-148]. Since most of the systems discussed below are adsorbed layers on graphite surfaces, we consider the graphite substrate in detail. The interaction potential between an adsorbate particle at the position r = (x,y, z) and all other substrate particles consists of two contributions,... [Pg.83]

We should mention here one of the important limitations of the singlet level theory, regardless of the closure applied. This approach may not be used when the interaction potential between a pair of fluid molecules depends on their location with respect to the surface. Several experiments and theoretical studies have pointed out the importance of surface-mediated [1,87] three-body forces between fluid particles for fluid properties at a solid surface. It is known that the depth of the van der Waals potential is significantly lower for a pair of particles located in the first adsorbed layer. In... [Pg.187]


See other pages where The interaction potential is mentioned: [Pg.1]    [Pg.181]    [Pg.227]    [Pg.233]    [Pg.1810]    [Pg.2020]    [Pg.2241]    [Pg.2257]    [Pg.2668]    [Pg.2936]    [Pg.61]    [Pg.213]    [Pg.352]    [Pg.413]    [Pg.602]    [Pg.174]    [Pg.8]    [Pg.163]    [Pg.207]    [Pg.220]    [Pg.146]    [Pg.134]    [Pg.157]    [Pg.173]    [Pg.82]    [Pg.107]   


SEARCH



Potential Consequences of Interactions Between Aeroallergens and Cells Within the Respiratory Tree

The Potential Energy of Interaction Between Particles

The Total-Interaction Potential Curve

The gas—solid surface interaction potential

The variety of interaction potentials

© 2024 chempedia.info