Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Force three body

We should mention here one of the important limitations of the singlet level theory, regardless of the closure applied. This approach may not be used when the interaction potential between a pair of fluid molecules depends on their location with respect to the surface. Several experiments and theoretical studies have pointed out the importance of surface-mediated [1,87] three-body forces between fluid particles for fluid properties at a solid surface. It is known that the depth of the van der Waals potential is significantly lower for a pair of particles located in the first adsorbed layer. In... [Pg.187]

A full-scale treatment of crystal growth, however, requires methods adapted for larger scales on top of these quantum-mechanical methods, such as effective potential methods like the embedded atom method (EAM) [11] or Stillinger-Weber potentials [10] with three-body forces necessary. The potentials are obtained from quantum mechanical calculations and then used in Monte Carlo or molecular dynamics methods, to be discussed below. [Pg.857]

Abstract We discuss the high-density nuclear equation of state within the Brueckner-Hartree-Fock approach. Particular attention is paid to the effects of nucleonic three-body forces, the presence of hyperons, and the joining with an eventual quark matter phase. The resulting properties of neutron stars, in particular the mass-radius relation, are determined. It turns out that stars heavier than 1.3 solar masses contain necessarily quark matter. [Pg.113]

Keywords Neutron Star, Brueckner-Hartree-Fock, Three-Body Force, Hyperons, Quark... [Pg.113]

The potential energy surface (i.e. the potential energy expressed as a function of the atomic positions) on which the classical trajectory moves is almost always semi-empirical and rather imprecisely known, because accurate quantum mechanical claculations of it are impossibly expensive except in the simplest systems. For use in a MD or MC program, the potential energy must be rendered into a form (e.g. a sum of two-body and sometimes three-body forces) that can be evaluated repeatedly at a cost of not more than a few seconds computer time per evaluation. [Pg.70]

But close to T = O for d = 3 we have to take into account three-body forces, entering the so-called tricritical region. The most prominent effect of throe-body forces is to replace c by a sum... [Pg.150]

For c C c , t < n-1/2 the chains are isolated, for c c they strongly overlap and feel the three-body forces. Writing in the 0-region the scaling law for the osmotic pressure as... [Pg.151]

Accidentally this relation agrees with Eq. (9.33), defining the tricritical region. This coincidence happens only in three dimensions. Indeed, our crossover diagrams ignore the three-body forces which induce an additional structure in the 0-region. This structure involves the strength of the three-body interaction as a new scale and therefore is not fixed relative to the curves shown here. [Pg.238]

A. Three-Body Forces in Rare Gases Fluids... [Pg.2]

The extension of SCIETs to the many-body interactions is presented in Section V. Rare gases, whose constituents interact through three-body forces, are a test case to examine the validity of the SCIETs in describing real systems. Again, the problem of the thermodynamic consistency is covered in this section, since recent SANS measurements provide the structure factor S(q) at very low-q and allow us to deduce the strength of the three-body interactions. A direct comparison of the theoretical results against sharp experiments is feasible. The conclusions are given in Section VI. [Pg.7]

The integral equation theory consists in obtaining the pair correlation function g(r) by solving the set of equations formed by (1) the Omstein-Zernike equation (OZ) (21) and (2) a closure relation [76, 80] that involves the effective pair potential weff(r). Once the pair correlation function is obtained, some thermodynamic properties then may be calculated. When the three-body forces are explicitly taken into account, the excess internal energy and the virial pressure, previously defined by Eqs. (4) and (5) have to be, extended respectively [112, 119] so that... [Pg.63]

The standard expressions of the partial derivatives of 113 can be found in the paper of Hoheisel [120]. At variance from SCIETs framework, the two- and three-body forces are explicitly calculated. [Pg.65]

In the earlier sections of this chapter we reviewed the many-electron formulation of the symmetry-adapted perturbation theory of two-body interactions. As we saw, all physically important contributions to the potential could be identified and computed separately. We follow the same program for the three-body forces and discuss a triple perturbation theory for interactions in trimers. We show how the pure three-body effects can be separated out and give working equations for the components in terms of molecular integrals and linear and quadratic response functions. These formulas have a clear, partly classical, partly quantum mechanical interpretation. The exchange terms are also classified for the explicit orbital formulas we refer to Ref. (302). [Pg.73]

Hydrogen fluoride trimer has also been used as an appropriate model system for the discussion of three-body forces 64>65). The data reported on (HF)3 indicate a stabilizing effect caused by the three-body interactions. The energy per hydrogen... [Pg.29]


See other pages where Force three body is mentioned: [Pg.22]    [Pg.28]    [Pg.242]    [Pg.246]    [Pg.120]    [Pg.547]    [Pg.99]    [Pg.114]    [Pg.115]    [Pg.390]    [Pg.436]    [Pg.145]    [Pg.349]    [Pg.304]    [Pg.150]    [Pg.151]    [Pg.151]    [Pg.156]    [Pg.173]    [Pg.174]    [Pg.105]    [Pg.532]    [Pg.65]    [Pg.66]    [Pg.66]    [Pg.76]    [Pg.78]    [Pg.119]    [Pg.20]    [Pg.20]    [Pg.26]    [Pg.27]   
See also in sourсe #XX -- [ Pg.99 , Pg.115 ]




SEARCH



Body force

© 2024 chempedia.info