Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pair Lennard-Jones

Figure A3.1.1. Typical pair potentials. Illustrated here are the Lennard-Jones potential, and the Weeks-Chandler- Anderson potential, which gives the same repulsive force as the Leimard-Jones potential. Figure A3.1.1. Typical pair potentials. Illustrated here are the Lennard-Jones potential, and the Weeks-Chandler- Anderson potential, which gives the same repulsive force as the Leimard-Jones potential.
Figure B3.3.4. Lennard-Jones pair potential showing the and r eontributions. Figure B3.3.4. Lennard-Jones pair potential showing the and r eontributions.
Rare-gas clusters can be produced easily using supersonic expansion. They are attractive to study theoretically because the interaction potentials are relatively simple and dominated by the van der Waals interactions. The Lennard-Jones pair potential describes the stmctures of the rare-gas clusters well and predicts magic clusters with icosahedral stmctures [139, 140]. The first five icosahedral clusters occur at 13, 55, 147, 309 and 561 atoms and are observed in experiments of Ar, Kr and Xe clusters [1411. Small helium clusters are difficult to produce because of the extremely weak interactions between helium atoms. Due to the large zero-point energy, bulk helium is a quantum fluid and does not solidify under standard pressure. Large helium clusters, which are liquid-like, have been produced and studied by Toennies and coworkers [142]. Recent experiments have provided evidence of... [Pg.2400]

The range of systems that have been studied by force field methods is extremely varied. Some force fields liave been developed to study just one atomic or molecular sp>ecies under a wider range of conditions. For example, the chlorine model of Rodger, Stone and TUdesley [Rodger et al 1988] can be used to study the solid, liquid and gaseous phases. This is an anisotropic site model, in which the interaction between a pair of sites on two molecules dep>ends not only upon the separation between the sites (as in an isotropic model such as the Lennard-Jones model) but also upon the orientation of the site-site vector with resp>ect to the bond vectors of the two molecules. The model includes an electrostatic component which contciins dipwle-dipole, dipole-quadrupole and quadrupole-quadrupole terms, and the van der Waals contribution is modelled using a Buckingham-like function. [Pg.249]

The above potential is referred to as a Lennard-Jones or 6-12 potential and is summed over all nonbonded pairs of atoms ij. The first positive term is the short range repulsion and the second negative term is the long range attraction. The parameters of the interaction are Aj and B... The convenient analytical form of the 6-12 potential means that it is often used, although an exponential repulsion term is usually considered to be a more accurate representation of the repulsive forces (as used in MM-t). [Pg.176]

Binary Mixtures—Low Pressure—Polar Components The Brokaw correlation was based on the Chapman-Enskog equation, but 0 g and were evaluated with a modified Stockmayer potential for polar molecules. Hence, slightly different symbols are used. That potential model reduces to the Lennard-Jones 6-12 potential for interactions between nonpolar molecules. As a result, the method should yield accurate predictions for polar as well as nonpolar gas mixtures. Brokaw presented data for 9 relatively polar pairs along with the prediction. The agreement was good an average absolute error of 6.4 percent, considering the complexity of some of... [Pg.595]

Extensive computer simulations have been caiTied out on the near-surface and surface behaviour of materials having a simple cubic lattice structure. The interaction potential between pairs of atoms which has frequently been used for inert gas solids, such as solid argon, takes die Lennard-Jones form where d is the inter-nuclear distance, is the potential interaction energy at the minimum conesponding to the point of... [Pg.199]

To illustrate the relationship between the microscopic structure and experimentally accessible information, we compute pseudo-experimental solvation-force curves F h)/R [see Eq. (22)] as they would be determined in SEA experiments from computer-simulation data for T z [see Eqs. (93), (94), (97)]. Numerical values indicated by an asterisk are given in the customary dimensionless (i.e., reduced) units (see [33,75,78] for definitions in various model systems). Results are correlated with the microscopic structure of a thin film confined between plane parallel substrates separated by a distance = h. Here the focus is specifically on a simple fluid in which the interaction between a pair of film molecules is governed by the Lennard-Jones (12,6) potential [33,58,59,77,79-84]. A confined simple fluid serves as a suitable model for approximately spherical OMCTS molecules confined... [Pg.31]

Fig. 11(a) displays plots of the in-plane pair correlation function for s = 2. and 3.0 well outside the regime where K exhibits its first maximum (see Fig. 12). The plots indicate that the transverse structures of one- and two-layer fluids (see Fig. 10) are essentially identical and typical of dense Lennard-Jones fluids. However, the transverse structure of a two-layer fluid is significantly affected as the peak of K is approached, as can be seen in Fig. 11(b) where g (zi,pi2) is plotted for s = 2.55 and 2.75, which points... Fig. 11(a) displays plots of the in-plane pair correlation function for s = 2. and 3.0 well outside the regime where K exhibits its first maximum (see Fig. 12). The plots indicate that the transverse structures of one- and two-layer fluids (see Fig. 10) are essentially identical and typical of dense Lennard-Jones fluids. However, the transverse structure of a two-layer fluid is significantly affected as the peak of K is approached, as can be seen in Fig. 11(b) where g (zi,pi2) is plotted for s = 2.55 and 2.75, which points...
R. Kjellander, S. Sarman. A study of anisotropic pair distribution theories for Lennard-Jones fluids in narrow slits. II. Pair correlations and solvation forces. Mol Phys 74 665-688, 1991. [Pg.70]

The simplest choice for the interaction potentials between the particles (at distance r) is the assumption of Lennard-Jones pair potentials,... [Pg.83]

Now we turn our attention to the results obtained from the pair theory for the system of assoeiating Lennard-Jones fluid in eontaet with a hard wall. The nonassoeiative part of the interpartiele potential is given by Eq. (87), whereas the assoeiative interaetion is given by Eq. (60), with d = 0.45 and <3 = 0.1. The diameter of fluid partieles a is taken as the unit of length. [Pg.201]

The first step towards the development of appropriate expressions is the decomposition of the nonassociative pair potential into repulsive and attractive terms. In this work we apply the Weeks-Chandler-Andersen separation of interactions [117], according to which the attractive part of the Lennard-Jones potential is defined by... [Pg.212]

Lennard-Jones 12-6 parameters have been deduced over the years, initially for the interactions between identical pairs of inert gas atoms. Over the years, authors have extended such smdies to include simple molecules and some examples are given in Table 1.3. [Pg.41]

Finally, it was found necessary to add a Lennard-Jones (LJ) 12-6 intermolec-ular term between each pair of quantum-mechanical and MM atoms, in order to obtain good interaction energies as well as good geometries for intermolecular interactions. [Pg.262]

The method of superposition of configurations as well as the method of different orbitals for different spins belong within the framework of the one-electron scheme, but, as soon as one introduces the interelectronic distance rijt a two-electron element has been accepted in the theory. In treating the covalent chemical bond and other properties related to electron pairs, it may actually seem more natural to consider two-electron functions as the fundamental building stones of the total wave function, and such a two-electron scheme has also been successfully developed (Hurley, Lennard-Jones, and Pople 1953, Schmid 1953). [Pg.258]

Hurley, A. C., Lennard-Jones, J., and Pople, J. A., Proc. Roy. Soc. [London) A220, 446, The molecular orbital theory of chemical valency XVI. A theory of paired electrons in polyatomic molecules." Use of two-electron functions T fa, x5) as a basis. [Pg.335]

Fig. 1. The Lennard Jones 12 6 pair potential plotted for a pair of CH2 united atoms using the OPTS united force field. Enonbond = 4e((o /r) (o /r) ), where s is the well depth for the potential and cr is the distance at which the repulsive energy exactly cancels the attractive energy... Fig. 1. The Lennard Jones 12 6 pair potential plotted for a pair of CH2 united atoms using the OPTS united force field. Enonbond = 4e((o /r) (o /r) ), where s is the well depth for the potential and cr is the distance at which the repulsive energy exactly cancels the attractive energy...
The creation of the Gay-Berne potential owes much to the original work by Corner in his pioneering development of pair potentials for molecules [7]. He had noted that the Lennard-Jones 12-6 potential provided a good description of the interactions between atoms... [Pg.68]

Instead of the hard-sphere model, the Lennard-Jones (LJ) interaction pair potential can be used to describe soft-core repulsion and dispersion forces. The LJ interaction potential is... [Pg.629]

The second generalization is the reinterpretation of the excluded volume per particle V(). Realizing that only binary collisions are likely in a low-density gas, van der Waals suggested the value Ina /I for hard spheres of diameter a and for particles which were modeled as hard spheres with attractive tails. Thus, for the Lennard-Jones fluid where the pair potential actually is... [Pg.100]


See other pages where Pair Lennard-Jones is mentioned: [Pg.423]    [Pg.518]    [Pg.152]    [Pg.423]    [Pg.518]    [Pg.152]    [Pg.2382]    [Pg.216]    [Pg.297]    [Pg.235]    [Pg.338]    [Pg.200]    [Pg.10]    [Pg.104]    [Pg.284]    [Pg.153]    [Pg.166]    [Pg.82]    [Pg.107]    [Pg.486]    [Pg.767]    [Pg.67]    [Pg.201]    [Pg.23]    [Pg.53]    [Pg.106]    [Pg.1]    [Pg.116]    [Pg.119]    [Pg.101]    [Pg.244]    [Pg.40]   
See also in sourсe #XX -- [ Pg.173 , Pg.233 , Pg.242 ]




SEARCH



Lennard

Lennard-Jones

Lennard-Jones equation pair potential

Lennard-Jones pair interaction energy

Lennard-Jones pair potentials

Pair potential models Lennard-Jones

Pair potentials Lennard-Jones introduced

© 2024 chempedia.info