Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Computer simulation extension

Another way to improve the error in a simulation, at least for properties such as the energy and the heat capacity that depend on the size of the system (the extensive properties), is to increase the number of atoms or molecules in the calculation. The standard deviation of the average of such a property is proportional to l/ /N. Thus, more accurate values can be obtained by running longer simulations on larger systems. In computer simulation it is unfortunately the case that the more effort that is expended the better the results that are obtained. Such is life ... [Pg.361]

Extensive computer simulations have been caiTied out on the near-surface and surface behaviour of materials having a simple cubic lattice structure. The interaction potential between pairs of atoms which has frequently been used for inert gas solids, such as solid argon, takes die Lennard-Jones form where d is the inter-nuclear distance, is the potential interaction energy at the minimum conesponding to the point of... [Pg.199]

Modem understanding of the hydrophobic effect attributes it primarily to a decrease in the number of hydrogen bonds that can be achieved by the water molecules when they are near a nonpolar surface. This view is confirmed by computer simulations of nonpolar solutes in water [15]. To a first approximation, the magnimde of the free energy associated with the nonpolar contribution can thus be considered to be proportional to the number of solvent molecules in the first solvation shell. This idea leads to a convenient and attractive approximation that is used extensively in biophysical applications [9,16-18]. It consists in assuming that the nonpolar free energy contribution is directly related to the SASA [9],... [Pg.139]

The constraints of the potential, Eq. (61), are fast to calculate in computer simulation [14]. Moreover, in the extensions of the theory to mixtures of different sized molecules [13,15,16], the calculations are significantly simpler. [Pg.194]

In this situation computer simulation is useful, since the conditions of the simulation can be chosen such that full equihbrium is established, and one can test the theoretical concepts more stringently than by experiment. Also, it is possible to deal with ideal and perfectly flat surfaces, very suitable for testing the general mechanisms alluded to above, and to disregard in a first step all the complications that real substrate surfaces have (corrugation on the atomistic scale, roughness on the mesoscopic scale, surface steps, adsorbed impurities, etc.). Of course, it may be desirable to add such complications at a later stage, but this will not be considered here. In fact, computer simulations, i.e., molecular dynamics (MD) and Monte Carlo (MC) calculations, have been extensively used to study both static and dynamic properties [11] in particular, structural properties at interfaces have been considered in detail [12]. [Pg.556]

We close these introductory remarks with a few comments on the methods which are actually used to study these models. They will for the most part be mentioned only very briefly. In the rest of this chapter, we shall focus mainly on computer simulations. Even those will not be explained in detail, for the simple reason that the models are too different and the simulation methods too many. Rather, we refer the reader to the available textbooks on simulation methods, e.g.. Ref. 32-35, and discuss only a few technical aspects here. In the case of atomistically realistic models, simulations are indeed the only possible way to approach these systems. Idealized microscopic models have usually been explored extensively by mean field methods. Even those can become quite involved for complex models, especially for chain models. One particularly popular and successful method to deal with chain molecules has been the self-consistent field theory. In a nutshell, it treats chains as random walks in a position-dependent chemical potential, which depends in turn on the conformational distributions of the chains in... [Pg.639]

Eastman chemical engineers provided innovative solutions to key steps in the methyl acetate process. Computer simulations were used extensively to test ways to minimize the size of the reactors and recycle streams, to maximize yields and conversions, and to refine the methyl acetate in a minimum number of steps. [Pg.101]

In 8CB, continued cooling into the smectic phase reveals the appearance of a broad ultra-low-frequency feature centred at around 10 cm where no other modes are seen. This is shown in Fig. 15. This feature appears to be unique to the smectic phase and has been tentatively attributed to intermolecular dipolar coupling across smectic layers [79]. In principle this should be a generic feature of smectics but it will be necessary to explore this issue through extensive computer simulations using realistic, shape-dependent potentials for... [Pg.34]

Familiarize the student extensively with time dependent dynamics of QM by using computer simulation, animation and visualization. [Pg.30]

Molecular dynamics and Monte Carlo simulations have been extensively applied to molten salts since 1968 to study structure, thermodynamic properties, and dynamic properties from a microscopic viewpoint. Several review papers have been published on computer simulation of molten salts. " Since the Monte Carlo method cannot yield dynamic properties, MD methods have been used to calculate dynamic properties. [Pg.149]

The interpretation of phenomenological electron-transfer kinetics in terms of fundamental models based on transition state theory [1,3-6,10] has been hindered by our primitive understanding of the interfacial structure and potential distribution across ITIES. The structure of ITIES was initially studied by electrochemical and thermodynamic analyses, and more recently by computer simulations and interfacial spectroscopy. Classical electrochemical analysis based on differential capacitance and surface tension measurements has been extensively discussed in the literature [11-18]. The picture that emerged from... [Pg.190]

Kauffman s conclusions arise only from computer simulations, and this is also the main reason for criticism, in particular for biologists. Even though extensive mathematical deliberations and sophisticated computer simulations could show that networks containing many elements can tend towards transitions which give systems of organized complexity, some important factors which lead to a living system are still missing. [Pg.246]

There have been extensive computer simulations and liquid state theories, and a good understanding of these systems is now available. The majority of work has focused on simple hard-chain systems, and the depletion and enhancement effects in these systems are well understood and there are several theories that are in quantitative agreement with computer simulations. In contrast, there has been relatively little attention focused on the effect of wall-fluid and fluid-fluid attractions on the behavior of confined polymers. Only the simplest of DFT approaches has been attempted, and the results are promising although the quantitative performance leaves a lot to be desired. [Pg.135]

The inclusion of chain connectivity prevents polymer strands from crossing one another in the course of a computer simulation. In bead-spring polymer models, this typically means that one has to limit the maximal (or typical) extension of a spring connecting the beads that represent the monomers along the chain. This process is most often performed using the so-called finitely extensible, nonlinear elastic (FENE) type potentials44 of Eq. [17]... [Pg.11]

The performance of a magnetic sector mass spectrometer depends totally on the ability to focus ions from source to detector. To produce ideal focusing a very wide range of factors must be taken into account. Modern computer simulation techniques have now been extensively applied in this instrument and have resulted in an ion optical design closer to the ideal than ever before. This configuration provides for complete image error correction in all planes. [Pg.73]


See other pages where Computer simulation extension is mentioned: [Pg.8]    [Pg.8]    [Pg.2247]    [Pg.352]    [Pg.141]    [Pg.142]    [Pg.451]    [Pg.467]    [Pg.475]    [Pg.957]    [Pg.170]    [Pg.193]    [Pg.303]    [Pg.305]    [Pg.348]    [Pg.529]    [Pg.839]    [Pg.231]    [Pg.86]    [Pg.101]    [Pg.519]    [Pg.431]    [Pg.141]    [Pg.144]    [Pg.116]    [Pg.175]    [Pg.191]    [Pg.194]    [Pg.253]    [Pg.205]    [Pg.27]    [Pg.219]    [Pg.74]    [Pg.199]    [Pg.243]    [Pg.125]   
See also in sourсe #XX -- [ Pg.84 ]




SEARCH



Computational simulations

Computer simulation

© 2024 chempedia.info