Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The electrode surface

Finally, the electrode potential may affect the overall process by determining the state of oxidation of the electrode surface. It is well known that in aqueous solution a platinum electrode has a bare surface only over the narrow potential range from approximately -f 0-4 V to -I-0-8 V versus N.H.E. at more cathodic potentials it is covered by adsorbed hydrogen atoms while at more anodic potentials it is covered by [Pg.171]

The oxidation of hydrazine follows the change in surface completely since it oxidizes rapidly on bare nickel and again on the niokel(III) oxide surface but in the intermediate potential region, where the surface is covered with nickel(II) hydroxide, the anodic oxidation cannot occur (Fleischmann etal., 1972d). [Pg.172]


In recent years, advances in experimental capabilities have fueled a great deal of activity in the study of the electrified solid-liquid interface. This has been the subject of a recent workshop and review article [145] discussing structural characterization, interfacial dynamics and electrode materials. The field of surface chemistry has also received significant attention due to many surface-sensitive means to interrogate the molecular processes occurring at the electrode surface. Reviews by Hubbard [146, 147] and others [148] detail the progress. In this and the following section, we present only a brief summary of selected aspects of this field. [Pg.202]

The development of scanning probe microscopies and x-ray reflectivity (see Chapter VIII) has allowed molecular-level characterization of the structure of the electrode surface after electrochemical reactions [145]. In particular, the important role of adsorbates in determining the state of an electrode surface is illustrated by scanning tunneling microscopic (STM) images of gold (III) surfaces in the presence and absence of chloride ions [153]. Electrodeposition of one metal on another can also be measured via x-ray diffraction [154]. [Pg.203]

There is an ordered layer of solvent dipoles next to the electrode surface, the extent of whose orientation is expected to depend on the charge on the electrode. [Pg.586]

The simplest model for water at the electrode surface has just two possible orientations of the water molecules at the surface, and was initially described by Watts-Tobin [22]. The associated potential drop is given by... [Pg.593]

The experimental data and arguments by Trassatti [25] show that at the PZC, the water dipole contribution to the potential drop across the interface is relatively small, varying from about 0 V for An to about 0.2 V for In and Cd. For transition metals, values as high as 0.4 V are suggested. The basic idea of water clusters on the electrode surface dissociating as the electric field is increased has also been supported by in situ Fourier transfomr infrared (FTIR) studies [26], and this model also underlies more recent statistical mechanical studies [27]. [Pg.594]

Only at extremely high electric fields are the water molecules fiilly aligned at the electrode surface. For electric fields of the size normally encountered, a distribution of dipole directions is found, whose half-widtli is strongly dependent on whether specific adsorption of ions takes place. In tlie absence of such adsorption the distribution fiinction steadily narrows, but in the presence of adsorption the distribution may show little change from that found at the PZC an example is shown in figure A2.4.10 [30]. [Pg.595]

At finite positive and negative charge densities on the electrode, the counterion density profiles often exhibit significantly higher maxima, i.e. there is an overshoot, and the derived potential actually shows oscillations itself close to the electrode surface at concentrations above about 1 M. [Pg.596]

Figure A2.4.12 shows the two possibilities that can exist, m which the Galvani potential of the solution, (jig, lies between ( )(I) and ( )(n) and in which it lies below (or, equivalently, above) the Galvani potentials of the metals. It should be emphasized that figure A2.4.12 is highly schematic in reality the potential near the phase boundary in the solution changes initially linearly and then exponentially with distance away from the electrode surface, as we saw above. The other point is that we have assumed that (jig is a constant in the region between the two electrodes. This will only be true provided the two electrodes are iimnersed in the same solution and that no current is passing. Figure A2.4.12 shows the two possibilities that can exist, m which the Galvani potential of the solution, (jig, lies between ( )(I) and ( )(n) and in which it lies below (or, equivalently, above) the Galvani potentials of the metals. It should be emphasized that figure A2.4.12 is highly schematic in reality the potential near the phase boundary in the solution changes initially linearly and then exponentially with distance away from the electrode surface, as we saw above. The other point is that we have assumed that (jig is a constant in the region between the two electrodes. This will only be true provided the two electrodes are iimnersed in the same solution and that no current is passing.
At higher current densities, the primary electron transfer rate is usually no longer limiting instead, limitations arise tluough the slow transport of reactants from the solution to the electrode surface or, conversely, the slow transport of the product away from the electrode (diffusion overpotential) or tluough the inability of chemical reactions coupled to the electron transfer step to keep pace (reaction overpotential). [Pg.603]

Electrode processes are a class of heterogeneous chemical reaction that involves the transfer of charge across the interface between a solid and an adjacent solution phase, either in equilibrium or under partial or total kinetic control. A simple type of electrode reaction involves electron transfer between an inert metal electrode and an ion or molecule in solution. Oxidation of an electroactive species corresponds to the transfer of electrons from the solution phase to the electrode (anodic), whereas electron transfer in the opposite direction results in the reduction of the species (cathodic). Electron transfer is only possible when the electroactive material is within molecular distances of the electrode surface thus for a simple electrode reaction involving solution species of the fonn... [Pg.1922]

Diflfiision, convection and migration are the fonns of mass transport that contribute to the essential supply and removal of material to and from the electrode surface [1, 2, 3 and 4],... [Pg.1924]

Pick s second law of difflision enables predictions of concentration changes of electroactive material close to the electrode surface and solutions, with initial and boundary conditions appropriate to a particular experiment, provide the basis of the theory of instrumental methods such as, for example, potential-step and cyclic voltanunetry. [Pg.1924]

Figure Bl.28.3. Concentration profiles of an electroactive species with distance from the electrode surface during a linear sweep voltaimnogram. Figure Bl.28.3. Concentration profiles of an electroactive species with distance from the electrode surface during a linear sweep voltaimnogram.
If adsorbed electroactive species are present on the electrode surface, the shape of the cyclic voltaimnogram changes, since the species do not need to difflise to the electrode surface. In this case the peaks are syimnetrical with coincident peak potentials provided the kinetics are fast. [Pg.1928]

O, a large current is detected, which decays steadily with time. The change in potential from will initiate the very rapid reduction of all the oxidized species at the electrode surface and consequently of all the electroactive species diffrising to the surface. It is effectively an instruction to the electrode to instantaneously change the concentration of O at its surface from the bulk value to zero. The chemical change will lead to concentration gradients, which will decrease with time, ultimately to zero, as the diffrision-layer thickness increases. At time t = 0, on the other hand, dc-Jdx) r. will tend to infinity. The linearity of a plot of i versus r... [Pg.1929]

Stripping voltammetry involves the pre-concentration of the analyte species at the electrode surface prior to the voltannnetric scan. The pre-concentration step is carried out under fixed potential control for a predetennined time, where the species of interest is accumulated at the surface of the working electrode at a rate dependent on the applied potential. The detemiination step leads to a current peak, the height and area of which is proportional to the concentration of the accumulated species and hence to the concentration in the bulk solution. The stripping step can involve a variety of potential wavefomis, from linear-potential scan to differential pulse or square-wave scan. Different types of stripping voltaimnetries exist, all of which coimnonly use mercury electrodes (dropping mercury electrodes (DMEs) or mercury film electrodes) [7, 17]. [Pg.1932]

Anodic-stripping voltaimnetry (ASV) is used for the analysis of cations in solution, particularly to detemiine trace heavy metals. It involves pre-concentrating the metals at the electrode surface by reducmg the dissolved metal species in the sample to the zero oxidation state, where they tend to fomi amalgams with Hg. Subsequently, the potential is swept anodically resulting in the dissolution of tire metal species back into solution at their respective fomial potential values. The detemiination step often utilizes a square-wave scan (SWASV), since it increases the rapidity of tlie analysis, avoiding interference from oxygen in solution, and improves the sensitivity. This teclmique has been shown to enable the simultaneous detemiination of four to six trace metals at concentrations down to fractional parts per billion and has found widespread use in seawater analysis. [Pg.1932]

However, the equation can be simplified, since the system is synmietrical and the radius of the disc is nomrally small compared to the insulating sheath. The access of the solution to the electrode surface may be regarded as imifomi and the flux may be described as a one-dimensional system, where the movement of species to the electrode surface occurs in one direction only, namely that perpendicular to the electrode surface ... [Pg.1934]

The great advantage of the RDE over other teclmiques, such as cyclic voltannnetry or potential-step, is the possibility of varying the rate of mass transport to the electrode surface over a large range and in a controlled way, without the need for rapid changes in electrode potential, which lead to double-layer charging current contributions. [Pg.1936]

Of course, in order to vary the mass transport of the reactant to the electrode surface, the radius of the electrode must be varied, and this unplies the need for microelectrodes of different sizes. Spherical electrodes are difficult to constnict, and therefore other geometries are ohen employed. Microdiscs are conunonly used in the laboratory, as diey are easily constnicted by sealing very fine wires into glass epoxy resins, cutting... [Pg.1939]

Two major sources of ultrasound are employed, namely ultrasonic baths and ultrasonic immersion hom probes [79, 71]- The fonuer consists of fixed-frequency transducers beneath the exterior of the bath unit filled with water in which the electrochemical cell is then fixed. Alternatively, the metal bath is coated and directly employed as electrochemical cell, but m both cases the results strongly depend on the position and design of the set-up. The ultrasonic horn transducer, on the other hand, is a transducer provided with an electrically conducting tip (often Ti6A14V), which is inuuersed in a three-electrode thenuostatted cell to a depth of 1-2 cm directly facing the electrode surface. [Pg.1942]

The cleaning or depassivation eflect is of great importance in sonoelectrochemistry, as it can be employed to wash off surface-adsorbed species and reduce blocking of the electrode by adsorption of reaction products. This eflect has been reported, for example, for the depassivation of iron electrodes and for the removal of deposits and in the presence of polymer films on the electrode surface. However, damage of the electrode surface, especially for materials of low hardness such as lead or copper, can also occur under harsh experimental conditions and applied intensities [70, Tf, 80]. [Pg.1943]

Although the applied potential at the working electrode determines if a faradaic current flows, the magnitude of the current is determined by the rate of the resulting oxidation or reduction reaction at the electrode surface. Two factors contribute to the rate of the electrochemical reaction the rate at which the reactants and products are transported to and from the surface of the electrode, and the rate at which electrons pass between the electrode and the reactants and products in solution. [Pg.511]

The movement of material toward or away from the electrode surface. [Pg.511]

The flux of material to and from the electrode surface is a complex function of all three modes of mass transport. In the limit in which diffusion is the only significant means for the mass transport of the reactants and products, the current in a voltammetric cell is given by... [Pg.512]

Influence of the Kinetics of Electron Transfer on the Faradaic Current The rate of mass transport is one factor influencing the current in a voltammetric experiment. The ease with which electrons are transferred between the electrode and the reactants and products in solution also affects the current. When electron transfer kinetics are fast, the redox reaction is at equilibrium, and the concentrations of reactants and products at the electrode are those specified by the Nernst equation. Such systems are considered electrochemically reversible. In other systems, when electron transfer kinetics are sufficiently slow, the concentration of reactants and products at the electrode surface, and thus the current, differ from that predicted by the Nernst equation. In this case the system is electrochemically irreversible. [Pg.512]


See other pages where The electrode surface is mentioned: [Pg.203]    [Pg.204]    [Pg.586]    [Pg.593]    [Pg.596]    [Pg.922]    [Pg.1922]    [Pg.1923]    [Pg.1923]    [Pg.1924]    [Pg.1926]    [Pg.1932]    [Pg.1933]    [Pg.1933]    [Pg.1934]    [Pg.1935]    [Pg.1936]    [Pg.1938]    [Pg.1939]    [Pg.1942]    [Pg.1949]    [Pg.511]    [Pg.511]    [Pg.511]    [Pg.512]   


SEARCH



Electrode surface

Internal surface of the electrode

Mass Transport to the Electrode Surface

Non-conductive polymers on the surface of Prussian blue modified electrodes

Orientation of Organic Molecules at the Electrode Surface

Polishing the electrode surface

Preparing the Electrode Surface

Studies of Chemical Reactions at the Electrode Surface

The Electrodes

The Surface State of Semiconductor Electrodes

The Working Electrode Surface

© 2024 chempedia.info