Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Terpenes functions

Rasher DB, Stout EP, Engel S, Kubanek J, Hay ME (2011) Macroalgal terpenes function as allelopathic agents against reef corals. Proc Natl Acad Sci USA 108 17726-17731... [Pg.2939]

Although the term terpene once referred only to hydrocarbons current usage includes functionally substituted derivatives as well grouped together under the general term isoprenoids Figure 26 6 (page 1086) presents the structural formulas for a number of representative examples The isoprene units m some of these are relatively easy to identify The three isoprene units m the sesquiterpene farnesol, for example are mdi cated as follows m color They are joined m a head to tail fashion... [Pg.1084]

Heteroatom functionalized terpene resins are also utilized in hot melt adhesive and ink appHcations. Diels-Alder reaction of terpenic dienes or trienes with acrylates, methacrylates, or other a, P-unsaturated esters of polyhydric alcohols has been shown to yield resins with superior pressure sensitive adhesive properties relative to petroleum and unmodified polyterpene resins (107). Limonene—phenol resins, produced by the BF etherate-catalyzed condensation of 1.4—2.0 moles of limonene with 1.0 mole of phenol have been shown to impart improved tack, elongation, and tensile strength to ethylene—vinyl acetate and ethylene—methyl acrylate-based hot melt adhesive systems (108). Terpene polyol ethers have been shown to be particularly effective tackifiers in pressure sensitive adhesive appHcations (109). [Pg.357]

In several important cases, new synthetic strategies have been developed into new production schemes. An outstanding example of this is the production of an entire family of terpene derivatives from a-pinene (29), the major component of most turpentines, via linalool (3) (12). Many of these materials had been produced from P-pinene, a lesser component of turpentine, via pyrolysis to myrcene and further chemical processing. The newer method offers greater manufacturing dexibiUty and better economics, and is environmentally friendly in that catalytic air oxidation is used to introduce functionality. [Pg.85]

The example given above of the selection of deoxycholic acid as a SM for the synthesis of cortisol also illustrates the use of a chiral natural substance as synthetic precursor of a chiral TGT. Here the matching process involves a mapping of individual stereocenters as well as rings, functional groups, etc. The synthesis of helminthosporal (105) from (-i-)-carvone (106)21 and the synthesis of picrotoxinin (107) from (-)-carvone (108)22 amply demonstrate this approach employing terpenes as chiral SM s. [Pg.34]

The most important group of derivatives for the amino function (Fig. 7-4) is the carbamate group, which can be formed by reactions with acids, acid chlorides or acid anhydrides. A series of chlorides as 2-chloroisovalerylchloride [1], chrysanthe-moylchloride [2] and especially chloride compounds of terpene derivatives (cam-phanic acid chloride [3], camphor-10-sulfonyl chloride [4]) are used. The a-methoxy-a-trifluoromethylphenylacetic acid or the corresponding acid chloride introduced by Mosher in the 1970s are very useful reagents for the derivatization of amines and alcohols [5]. [Pg.188]

Terpenoid substances are of broad distribution and diverse function in insects. One set, elaborated by the mandibular glands of Acanthomyops claviger, acts both as a defensive secretion and as an alarm releaser. When fed Cu-labeled acetate or mevalonate, laboratory colonies of these ants produce radioactive citronellal and citral, providing unambiguous evidence for de novo synthesis of these terpenes by the ant. The incorporations of these precursors implicate the mevalonic acid pathway as the likely biosynthetic route. [Pg.31]

The reactions of terpenes with ozone lead to a complicated array of products, but the rate behavior for ozone reacting with a terpene can be studied by measuring the concentration of the terpene as a function of time ... [Pg.1075]

No geographic structure was revealed by this analysis, with trees from Arch Cape, Oregon, Whitetish, Montana, and sites from northern British Columbia, including Queen Charlotte Islands, being closely associated. The authors remarked on the lack of differentiation between coastal and interior populations. A reinvestigation of red cedar from 55 sites (3-6 trees per site) provided a new data set that was analyzed by numerical and discriminant-function analyses (von Rudloff et al., 1988). These analyses confirmed the low intra- and interpopulational variation seen in the earlier study, but did reveal small differences between coastal and interior populations. No correlations between northern and southern populations emerged from the analyses likewise, elevation had no effect on terpene composition. [Pg.138]

The only other functional group is the conjugated unsaturated ester. This functionality is remote from the stereocenters and the ketone functionality, and does not play a key role in most of the reported syntheses. Most of the syntheses use cyclic starting materials. Those in Schemes 13.4 and 13.5 lead back to a para-substituted aromatic ether. The syntheses in Schemes 13.7 and 13.8 begin with an accessible terpene intermediate. The syntheses in Schemes 13.10 and 13.11 start with cyclohexenone. Scheme 13.3 presents a retrosynthetic analysis leading to the key intermediates used for the syntheses in... [Pg.1174]

Conventionally, central and special metabolic pathways are distinguished. Central pathways are common to the decomposition and synthesis of major macromolecules. Actually, they are much alike in all representatives of the living world. Special cycles are characteristic of the synthesis and decomposition of individual monomers, macromolecules, cofactors, etc. Special cycles are extremely diversified, especially in the plant kingdom. For this reason, the plant metabolism is conventionally classified into primary and secondary metabolisms. The primary metabolism includes the classical processes of synthesis and deeradation of major macromolecules (proteins, carbohydrates, lipids, nucleic acids, etc.), while the secondary metabolism ensuing from the primary one includes the conversions of special biomolecules (for example, alkaloids, terpenes, etc.) that perform regulatory or other functions, or simply are metabolic end byproducts. [Pg.169]

Fourier transform infrared (FTIR) spectroscopy, 13C nuclear magnetic resonance (NMR) spectroscopy, ultraviolet-visible (UV-VIS) and fluorescence spectroscopy can be integrated with chromatographic techniques especially in the study of ageing and degradation of terpenic materials. They can be used to study the transformation, depletion or formation of specific functional groups in the course of ageing. [Pg.218]

One or both carbonyls in /3-diketones can be reduced, as well as the carbonyl function in acyl cyanides (210). Similar treatment of a,/3-unsat-urated ketones and aldehydes can lead to the saturated carbonyl products via selective reduction of the olefinic bond (207, 208, 210) see Eq. (51) in Section III,A,4. Some terpenes (a- and /3-ionone, pulegone) were reduced in this way (208). Platinum(II) phosphine complexes have been used for the hydrosilylation of saturated ketones and could be used for the reduction (211). [Pg.337]

Feringa and co-workers described the tandem addition-aldol cyclization protocol leading to the formation of 6,6-, 6,7-, and 6,8-annulated bicyclic systems (Scheme 68).39 Using Cu(n)-29 as catalyst and functionalized organozinc reagents as nucleophiles, the conjugate addition reaction followed by aldol cyclization can offer highly enantioselec-tive annulation products (up to 98% ee). This method can be used in the synthesis of carbocyclic compounds, such as steroids, terpenes, and other natural products. [Pg.397]

Terpenes are a large and diverse class of compounds produced by a wide variety of organisms, though plants are an especially prolific source. The terms terpenoid and isoprenoid can be used interchangeably with terpene, though, strictly, terpenes are hydrocarbons (composed only of carbon and hydrogen) while terpenoids and iso-prenoids have been further functionalized. [Pg.9]


See other pages where Terpenes functions is mentioned: [Pg.2140]    [Pg.2140]    [Pg.11]    [Pg.13]    [Pg.358]    [Pg.66]    [Pg.146]    [Pg.254]    [Pg.1077]    [Pg.133]    [Pg.117]    [Pg.283]    [Pg.107]    [Pg.108]    [Pg.137]    [Pg.167]    [Pg.213]    [Pg.239]    [Pg.208]    [Pg.1187]    [Pg.1339]    [Pg.74]    [Pg.276]    [Pg.203]    [Pg.77]    [Pg.330]    [Pg.151]    [Pg.31]    [Pg.27]    [Pg.414]    [Pg.17]    [Pg.122]   
See also in sourсe #XX -- [ Pg.1232 ]




SEARCH



Acyclic terpenes, functional groups

Cyclic terpenes, functional groups

Terpene aldehydes, functional groups

Terpene cyclase, function

Terpenes ecological function

© 2024 chempedia.info