Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metabolisms primary

In view of the well-documented inhibition of dihydrofolate reductase by aminopterin (325), methotrexate (326) and related compounds it is generally accepted that this inhibitory effect constitutes the primary metabolic action of folate analogues and results in a block in the conversion of folate and dihydrofolate (DHF) to THF and its derivatives. As a consequence of this block, tissues become deficient in the THF derivatives, and this deficiency has many consequences similar to those resulting from nutritional folate deficiency. The crucial effect, however, is a depression of thymidylate synthesis with a consequent failure in DNA synthesis and arrest of cell division that has lethal results in rapidly proliferating tissues such as intestinal mucosa and bone marrow (B-69MI21604, B-69MI21605). [Pg.326]

However, very recent studies by Fish and his co-workers (467) with butyltin compounds showed that the primary, metabolic reaction is not Sn-C bond-cleavage but carbon hydroxylation of the n-butyl group. Using [l- C]tetrabutyltin in an in vitro study, the major, primary metabolite was identified as a 2-hydroxybutyltributyltin derivative that underwent a rapid /3-elimination reaction to afford 1-butene and a tri-butyltin compound (467). [Pg.48]

PAHs can be bioconcentrated or bioaccumulated by certain aquatic invertebrates low in the food chain that lack the capacity for effective biotransformation (Walker and Livingstone 1992). Mollusks and Daphnia spp. are examples of organisms that readily bioconcentrate PAH. On the other hand, fish and other aquatic vertebrates readily biotransform PAH so, biomagnification does not extend up the food chain as it does in the case of persistent polychlorinated compounds. As noted earlier, P450-based monooxygenases are not well represented in mollusks and many other aquatic invertebrates (see Chapter 4, Section 4.2) so, this observation is not surprising. Oxidation catalyzed by P450 is the principal (perhaps the only) effective mechanism of primary metabolism of PAH. [Pg.186]

With aldicarb, primary metabolic attack is again by oxidation and hydrolysis. Hydrolytic cleavage yields an oxime and represents a detoxication. Oxidation to aldicarb sulfoxide and sulfone, however, yields products that are active anticholinesterases. Carbofuran is detoxified by both hydrolytic and oxidative attack. [Pg.213]

The metabolism of permethrin will be taken more generally as an example of the metabolism of pyrethroids (Figure 12.2). The two types of primary metabolic attack are by microsomal monooxygenases and esterases. Monooxygenase attack involves... [Pg.232]

Any time an ABG is analyzed it is wise to concurrently inspect the serum chemistry values to calculate the anion gap. The body does not generate an anion gap to compensate for a primary disorder. As such, if the calculated anion gap exceeds 12 mEq/L (mmol/L) there is a primary metabolic acidosis regardless of the pH or the serum HC03 concentration. The anion gap may be artificially lowered by decreased serum albumin, multiple myeloma, lithium intoxication, or a profound increase in the serum potassium, calcium, or magnesium. [Pg.424]

The primary metabolism of an organic compound uses a substrate as a source of carbon and energy. For the microorganism, this substrate serves as an electron donor, which results in the growth of the microbial cell. The application of co-metabolism for bioremediation of a xenobiotic is necessary because the compound cannot serve as a source of carbon and energy due to the nature of the molecular structure, which does not induce the required catabolic enzymes. Co-metabolism has been defined as the metabolism of a compound that does not serve as a source of carbon and energy or as an essential nutrient, and can be achieved only in the presence of a primary (enzyme-inducing) substrate. [Pg.576]

Conventionally, central and special metabolic pathways are distinguished. Central pathways are common to the decomposition and synthesis of major macromolecules. Actually, they are much alike in all representatives of the living world. Special cycles are characteristic of the synthesis and decomposition of individual monomers, macromolecules, cofactors, etc. Special cycles are extremely diversified, especially in the plant kingdom. For this reason, the plant metabolism is conventionally classified into primary and secondary metabolisms. The primary metabolism includes the classical processes of synthesis and deeradation of major macromolecules (proteins, carbohydrates, lipids, nucleic acids, etc.), while the secondary metabolism ensuing from the primary one includes the conversions of special biomolecules (for example, alkaloids, terpenes, etc.) that perform regulatory or other functions, or simply are metabolic end byproducts. [Pg.169]

Particularly important to the pathways of modular synthases is the incorporation of novel precursors, including nonproteinogenic amino acids in NRP systems [17] and unique CoA thioesters in PK and fatty acid synthases [18]. These building blocks expand the primary metabolism and offer practically unlimited variability applied to natural products. Noteworthy within this context is the contiguous placement of biosynthetic genes for novel precursors within the biosynthetic gene cluster in prokaryotes. Such placement has allowed relatively facile elucidation of biosynthetic pathways and rapid discovery of novel enzyme mechanisms to create such unique building blocks. These new pathways offer a continued expansion of the enzymatic toolbox available for chemical catalysis. [Pg.292]

Flavonoid biosynthesis is linked to primary metabolism through both plastid- and mitochondria-derived intermediates, each requiring export to the cytoplasm where they are incorporated into separate halves of the molecule. [Pg.143]

The amino acid L-tryptophan is the precursor for the synthesis of 5-HT. The synthesis and primary metabolic pathways of 5-HT are shown in Figure 13-5. The initial step in the synthesis of serotonin is the facilitated transport of the amino acid L-tryptophan from blood into brain. The primary source of tryptophan is dietary protein. Other neutral amino acids, such as phenylalanine, leucine and methionine, are transported by the same carrier into the brain. Therefore, the entry of tryptophan into brain is not only related to its concentration in blood but is also a function of its concentration in relation to the concentrations of other neutral amino acids. Consequently, lowering the dietary intake of tryptophan while raising the intake of the amino acids with which it competes for transport into brain lowers the content of 5-HT in brain and changes certain behaviors associated with 5-HT function. This strategy for lowering the brain content of 5-HT has been used clinically to evaluate the importance of brain 5-HT in the mechanism of action of psychotherapeutic drugs. [Pg.231]

Arterial blood gases are measured to determine oxygenation and acid-base status (Fig. 74-1). Low pH values (less than 7.35) indicate acidemia, whereas high values (greater than 7.45) indicate alkalemia. The PaC02 value helps to determine if there is a primary respiratory abnormality, whereas the I IC( )3 concentration helps to determine if there is a primary metabolic abnormality. Steps in acid-base interpretation are described in Table 74-2. [Pg.852]

FIGURE 74-2. Treatment algorithm for patients with primary metabolic alkalosis. (CHF, congestive heart failure K, potassium.)... [Pg.859]

The peptide sequences obtained for codeinone reductase aligned well with the amino acid sequences for 6 -deoxychalcone synthase (chalcone reductase) from alfalfa, Glycerrhiza, and soybean. Knowledge of the relative positions of the peptides allowed for a quick RT-PCR based isolation of cDNAs encoding codeinone reductase from P. somniferum. The codeinone reductase isoforms are 53 % identical to chalcone reductase from soybean.25 By sequence comparison, both codeinone reductase and chalcone reductase belong to the aldo/keto reductase family, a group of structurally and functionally related NADPH-dependent oxidoreductases, and thereby possibly arise from primary metabolism. Six alleles encoding codeinone... [Pg.172]


See other pages where Metabolisms primary is mentioned: [Pg.224]    [Pg.60]    [Pg.424]    [Pg.451]    [Pg.71]    [Pg.78]    [Pg.136]    [Pg.183]    [Pg.221]    [Pg.234]    [Pg.234]    [Pg.132]    [Pg.177]    [Pg.180]    [Pg.222]    [Pg.222]    [Pg.425]    [Pg.564]    [Pg.68]    [Pg.77]    [Pg.269]    [Pg.293]    [Pg.451]    [Pg.62]    [Pg.529]    [Pg.116]    [Pg.103]    [Pg.638]    [Pg.987]    [Pg.16]    [Pg.68]    [Pg.175]   
See also in sourсe #XX -- [ Pg.7 ]

See also in sourсe #XX -- [ Pg.147 , Pg.148 , Pg.149 ]

See also in sourсe #XX -- [ Pg.1414 ]

See also in sourсe #XX -- [ Pg.1414 ]

See also in sourсe #XX -- [ Pg.1414 ]

See also in sourсe #XX -- [ Pg.398 ]

See also in sourсe #XX -- [ Pg.3 , Pg.23 , Pg.34 , Pg.55 , Pg.70 , Pg.75 , Pg.81 , Pg.209 , Pg.213 ]

See also in sourсe #XX -- [ Pg.61 ]




SEARCH



© 2024 chempedia.info