Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tensile strength resins

The cured polymers are hard, clear, and glassy thermoplastic resins with high tensile strengths. The polymers, because of their highly polar stmcture, exhibit excellent adhesion to a wide variety of substrate combinations. They tend to be somewhat britde and have only low to moderate impact and peel strengths. The addition of fillers such as poly (methyl methacrylate) (PMMA) reduces the brittleness somewhat. Newer formulations are now available that contain dissolved elastomeric materials of various types. These mbber-modifted products have been found to offer adhesive bonds of considerably improved toughness (3,4). [Pg.178]

Modified ETEE is less dense, tougher, and stiffer and exhibits a higher tensile strength and creep resistance than PTEE, PEA, or EEP resins. It is ductile, and displays in various compositions the characteristic of a nonlinear stress—strain relationship. Typical physical properties of Tef2el products are shown in Table 1 (24,25). Properties such as elongation and flex life depend on crystallinity, which is affected by the rate of crysta11i2ation values depend on fabrication conditions and melt cooling rates. [Pg.366]

Extmsion of polyethylene and some polypropylenes is usually through a circular die into a tubular form, which is cut and collapsed into flat film. Extmsion through a linear slot onto chilled rollers is called casting and is often used for polypropylene, polyester, and other resins. Cast, as well as some blown, films may be further heated and stretched in the machine or in transverse directions to orient the polymer within the film and improve physical properties such as tensile strength, stiffness, and low temperature resistance. [Pg.453]

Heteroatom functionalized terpene resins are also utilized in hot melt adhesive and ink appHcations. Diels-Alder reaction of terpenic dienes or trienes with acrylates, methacrylates, or other a, P-unsaturated esters of polyhydric alcohols has been shown to yield resins with superior pressure sensitive adhesive properties relative to petroleum and unmodified polyterpene resins (107). Limonene—phenol resins, produced by the BF etherate-catalyzed condensation of 1.4—2.0 moles of limonene with 1.0 mole of phenol have been shown to impart improved tack, elongation, and tensile strength to ethylene—vinyl acetate and ethylene—methyl acrylate-based hot melt adhesive systems (108). Terpene polyol ethers have been shown to be particularly effective tackifiers in pressure sensitive adhesive appHcations (109). [Pg.357]

Content of Ot-Olefin. An increase in the a-olefin content of a copolymer results in a decrease of both crystallinity and density, accompanied by a significant reduction of the polymer mechanical modulus (stiffness). Eor example, the modulus values of ethylene—1-butene copolymers with a nonuniform compositional distribution decrease as shown in Table 2 (6). A similar dependence exists for ethylene—1-octene copolymers with uniform branching distribution (7), even though all such materials are, in general, much more elastic (see Table 2). An increase in the a-olefin content in the copolymers also results in a decrease of their tensile strength but a small increase in the elongation at break (8). These two dependencies, however, are not as pronounced as that for the resin modulus. [Pg.396]

Film. By far the largest appHcation for LLDPE resins (over 60% in the United States) is film. Because LLDPE film has high tensile strength and puncture resistance, it is able to compete with HDPE film for many uses. The toughness and low temperature properties of LLDPE film also exceed those of conventional LDPE. Furthermore, because LLDPE resins exhibit relatively low strain hardening in the molten state and lower extensional viscosity, it can be produced at high rates with Httle risk of bubble breaks. [Pg.404]

Resin Fillei Density, g/cm Tensile strength, MPa Flexural modulus, GPa" Notched Izod, J/m HDT at 1.82 MPa", °C... [Pg.307]

The excellent chemical resistance and physical properties of PVA resins have resulted in broad industrial use. The polymer is an excellent adhesive and possesses solvent-, oil-, and grease-resistant properties matched by few other polymers. Poly(vinyl alcohol) films exhibit high tensile strength, abrasion resistance, and oxygen barrier properties which, under dry conditions, are superior to those of any other known polymer. The polymer s low surface tension provides for excellent emulsification and protective coUoid properties. [Pg.475]

Amino resins are lighter in color and have better tensile strength and hardness than phenoHc resins their impact strength and heat and water resistance are less than those of phenoHcs. The melamine—formaldehyde resins are harder and have better heat and moisture resistance than the urea resins, but they are also more expensive. The physical properties of the melamine—formaldehyde laminates are Hsted in Table 1. [Pg.328]

Sihcon carbide fibers exhibit high temperature stabiUty and, therefore, find use as reinforcements in certain metal matrix composites (24). SiUcon fibers have also been considered for use with high temperature polymeric matrices, such as phenoHc resins, capable of operating at temperatures up to 300°C. Sihcon carbide fibers can be made in a number of ways, for example, by vapor deposition on carbon fibers. The fibers manufactured in this way have large diameters (up to 150 P-m), and relatively high Young s modulus and tensile strength, typically as much as 430 GPa (6.2 x 10 psi) and 3.5 GPa (507,500 psi), respectively (24,34) (see Refractory fibers). [Pg.6]

Both tensile strength equations are iRustiated in Figure 12 using data typical of graphite fibers in epoxy resin. [Pg.11]

Fig. 12. (a) The variation of the tensile strength of unidirectional carbon-fiber-reinforced epoxy resin as a function of the fiber volume fraction, (b) The variation of the tensile strength of unidirectional carbon-fiber-reinforced epoxy resin as a function of the fiber volume fraction for low fiber volume... [Pg.12]

Random copolymers of vinyl chloride and other monomers are important commercially. Most of these materials are produced by suspension or emulsion polymerization using free-radical initiators. Important producers for vinyl chloride—vinyUdene chloride copolymers include Borden, Inc. and Dow. These copolymers are used in specialized coatings appHcations because of their enhanced solubiUty and as extender resins in plastisols where rapid fusion is required (72). Another important class of materials are the vinyl chloride—vinyl acetate copolymers. Principal producers include Borden Chemicals Plastics, B. F. Goodrich Chemical, and Union Carbide. The copolymerization of vinyl chloride with vinyl acetate yields a material with improved processabihty compared with vinyl chloride homopolymer. However, the physical and chemical properties of the copolymers are different from those of the homopolymer PVC. Generally, as the vinyl acetate content increases, the resin solubiUty in ketone and ester solvents and its susceptibiUty to chemical attack increase, the resin viscosity and heat distortion temperature decrease, and the tensile strength and flexibiUty increase slightly. [Pg.185]


See other pages where Tensile strength resins is mentioned: [Pg.622]    [Pg.467]    [Pg.622]    [Pg.467]    [Pg.390]    [Pg.143]    [Pg.197]    [Pg.488]    [Pg.358]    [Pg.382]    [Pg.382]    [Pg.383]    [Pg.388]    [Pg.404]    [Pg.429]    [Pg.517]    [Pg.306]    [Pg.274]    [Pg.280]    [Pg.306]    [Pg.320]    [Pg.448]    [Pg.190]    [Pg.19]    [Pg.288]    [Pg.490]    [Pg.163]    [Pg.450]    [Pg.455]    [Pg.462]    [Pg.468]    [Pg.327]    [Pg.336]    [Pg.344]    [Pg.3]    [Pg.7]    [Pg.186]    [Pg.64]    [Pg.64]    [Pg.109]   
See also in sourсe #XX -- [ Pg.21 , Pg.200 ]




SEARCH



Tensil strength

© 2024 chempedia.info