Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

TEMPO preparation

AUen, A.D., Cheng, B., Fenwick, M.H., Givehchi, B., Henry-Riyad, H., Nikolaev, V.A., Shikhova, E.A., Tahmassebi, D., Tidwell, T.T., and Wang, S., Ketene Reactions with the Aminoxyl Radical TEMPO Preparative, Kinetic and Theoretical Studies,/. Org. Chem., 66, 2611, 2001. [Pg.1828]

Successful NMP in emulsion requires use of conditions where there is no discrete monomer droplet phase and a mechanism to remove any excess nitroxide formed in the particle phase as a consequence of the persistent radical effect. Szkurhan and Georges"18 precipitated an acetone solution of a low molecular weight TEMPO-tcrminated PS into an aqueous solution of PVA to form emulsion particles. These were swollen with monomer and polymerized at 135 °C to yield very low dispersity PS and a stable latex. Nicolas et at.219 performed emulsion NMP of BA at 90 °C making use of the water-soluble alkoxyamine 110 or the corresponding sodium salt both of which are based on the open-chain nitroxide 89. They obtained PBA with narrow molecular weight distribution as a stable latex at a relatively high solids level (26%). A low dispersity PBA-WocA-PS was also prepared,... [Pg.482]

Margitfalvi M, Borbath 1, Tempos A (1998) In Delmon (ed) Preparation of Catalysts Vll. Elsevier Science, Amsterdam, p 195... [Pg.208]

TEMP =(W CP (TEMPO-TEMP)+W XA0 HR-Q)/(M CP) PLOT T,TEMP,0,TFIN,0,TEMPMAX PREPARE T,TEMP,M... [Pg.432]

A number of modifications were made to meet scale-up requirements. In the preparation of the common intermediate, LiBH4 was used in place of LiAlH4 in Step A-2 and a TEMPO-NaOCl oxidation was used in place of Swern oxidation in Step A-3. Some reactions presented difficulty in the scale-up. For example, the boron enolate aldolization in Step B-l gave about 50% yield on the 20- to 25-kg scale as opposed to greater than 75% on a 50-g scale. The amide formation in Step B-3 was modified to eliminate the use of trimethylaluminum, and the common intermediate 17 could be prepared on a 30-kg scale using this modified sequence. The synthesis of the C(l)-C(6) segment V was done by Steps C-l to C-5 in 66% yield on the scale of several kg. [Pg.1243]

The Ir11 dimer [Ir(oep)]2 (oep = octaethylporphyrin) has been prepared in low yield by photolysis of (oep)IrCH3 in C6D6.473 This preparation has been improved by Chan et al.474, as shown in Reaction Scheme 24, where TEMPO = 2,2,6,6-tetramethyl-l-piperidinyloxy, free radical. The dimer undergoes several organometallic reactions, including oxidative addition of alkyl C 11 bonds and alkene insertions.475... [Pg.199]

A combination of TEMPO living free radical (LFRP) and anionic polymerization was used for the synthesis of block-graft, block-brush, and graft-block-graft copolymers of styrene and isoprene [201]. The block-graft copolymers were synthesized by preparing a PS-fo-poly(styrene-co-p-chloromethylstyrene) by LFRP [Scheme 110 (1)], and the subsequent re-... [Pg.123]

The same group recently disclosed a related free radical process, namely an efficient one-pot sequence comprising a homolytic aromatic substitution followed by an ionic Homer-Wadsworth-Emmons olefination, for the production of a small library of a,/3-unsaturated oxindoles (Scheme 6.164) [311]. Suitable TEMPO-derived alkoxy-amine precursors were exposed to microwave irradiation in N,N-dimethylformam-ide for 2 min to generate an oxindole intermediate via a radical reaction pathway (intramolecular homolytic aromatic substitution). After the addition of potassium tert-butoxide base (1.2 equivalents) and a suitable aromatic aldehyde (10-20 equivalents), the mixture was further exposed to microwave irradiation at 180 °C for 6 min to provide the a,jS-unsaturated oxindoles in moderate to high overall yields. A number of related oxindoles were also prepared via the same one-pot radical/ionic pathway (Scheme 6.164). [Pg.213]

The fateful year, said Von Schnitzler, had been 1936. "After a conference with Wehrmacht intelligence officials in 1936," Ilgner promised to send them "copies of all his reports from abroad. In 1937, the Berlin Northwest 7 office first took the initiative in preparing bombing surveys, and then interested the Wehrmacht in them. With the increased tempo after 1936, continuous union between Farben and the Wehrmacht was the consequence."... [Pg.330]

Nitroxide attached to macromolecules also induces the living radical polymerization of St. Yoshida and Sugita [252] prepared a polymeric stable radical by the reaction of the living end of the polytetrahydrofuran prepared by cationic polymerization with 4-hydroxy-TEMPO and studied the living radical polymerization of St with the nitroxide-bearing polytetrahydrofuran chain. The nitroxides attached to the dendrimer have been synthesized (Eq. 69) to yield block copolymers consisting of a dendrimer and a linear polymer [250,253]. [Pg.119]

As the initiator, a common radical initiator and arenesulfonyl chloride are also used [286,287]. As shown in Table 6, this polymerization has a significantly large polymerization rate, and it is hardly disturbed by impurities such as alcohol and water [288]. ATRP with Cu complex was also applied to the polymerization of acrylates [289,290], methacrylates [290-297], and AN [298] as well as St [288, 297, 299]. Because of the suppressed bimolecular termination, hyperbranched polymers are readily prepared [292], being similar to the polymerization with TEMPO previously described. [Pg.125]

Living free-radical polymerization has recently attracted considerable attention since it enables the preparation of polymers with well-controlled composition and molecular architecture previously the exclusive domain of ionic polymerizations, using very robust conditions akin to those of a simple radical polymerization [77 - 86]. In one of the implementations, the grafting is achieved by employing the terminal nitroxide moieties of a monolith prepared in the presence of a stable free radical such as 2,2,5,5-tetramethyl-l-pyperidinyloxy (TEMPO). In this way, the monolith is prepared first and its dormant free-... [Pg.99]

Scheme 31) [109]. 4-Chlorobutanal, cyclopropylaldehyde, and m-phenoxyl-benzaldehyde are also prepared in the two-phase system [110]. Indirect electrooxidation of 6y3-methyl-3y3, 5a-dihydroxy-16a, 17a-cyclohexanopregnan-20-one are indirectly electrooxidized to the corresponding 5a-hydroxy-3,20-dione using sodium bromide and substituted TEMPO as the mediating couple [111]. [Pg.506]

Cyclohexenones 34 also undergo a highly diastereoselective dihydroxylation to give cii-diols 39 (Scheme 11).22 These diol amides are converted to hydroxylactones 40 by an acid-catalyzed process involving retro aldol-realdolization prior to transacylation. The enantiomers of hydroxylactones 40 are obtained from iodolactones 35 by iodide exchange with 2,2,6,6-tetramethylpiperidin-l-yloxy free radical (TEMPO) followed by reductive cleavage of the TEMPO derivative with Zn in ElOAc. The enantiomeric purity of the hydroxylactones prepared by either route is 95-98% ee. [Pg.5]

While in most of the reports on SIP free radical polymerization is utihzed, the restricted synthetic possibihties and lack of control of the polymerization in terms of the achievable variation of the polymer brush architecture limited its use. The alternatives for the preparation of weU-defined brush systems were hving ionic polymerizations. Recently, controlled radical polymerization techniques has been developed and almost immediately apphed in SIP to prepare stracturally weU-de-fined brush systems. This includes living radical polymerization using nitroxide species such as 2,2,6,6-tetramethyl-4-piperidin-l-oxyl (TEMPO) [285], reversible addition fragmentation chain transfer (RAFT) polymerization mainly utilizing dithio-carbamates as iniferters (iniferter describes a molecule that functions as an initiator, chain transfer agent and terminator during polymerization) [286], as well as atom transfer radical polymerization (ATRP) were the free radical is formed by a reversible reduction-oxidation process of added metal complexes [287]. All techniques rely on the principle to drastically reduce the number of free radicals by the formation of a dormant species in equilibrium to an active free radical. By this the characteristic side reactions of free radicals are effectively suppressed. [Pg.423]

In this review, synthesis of block copolymer brushes will be Hmited to the grafting-from method. Hussemann and coworkers [35] were one of the first groups to report copolymer brushes. They prepared the brushes on siUcate substrates using surface-initiated TEMPO-mediated radical polymerization. However, the copolymer brushes were not diblock copolymer brushes in a strict definition. The first block was PS, while the second block was a 1 1 random copolymer of styrene/MMA. Another early report was that of Maty-jaszewski and coworkers [36] who reported the synthesis of poly(styrene-h-ferf-butyl acrylate) brushes by atom transfer radical polymerization (ATRP). [Pg.129]

Dynamic formation of graft polymers was synthesized by means of the radical crossover reaction of alkoxyamines by using the complementarity between nitroxide radical and styryl radical (Fig. 8.13) [40]. Copolymer 48 having alkoxyamine units on its side chain was synthesized via atom transfer radical polymerization (ATRP) of TEMPO-based alkoxyamine monomer 47 and MMA at 50°C (Scheme 8.9). The TEMPO-based alkoxyamine-terminated polystyrene 49 was prepared through the conventional nitroxide-mediated free radical polymerization (NMP) procedure [5,41], The mixture of copolymers 48 and 49 was heated in anisole... [Pg.246]

Scheme 8.10 Dynamic formation of graft polymer 50 prepared form copolymer 48 and TEMPO-based alkoxyamine-terminated polystyrene 49 [40]. Scheme 8.10 Dynamic formation of graft polymer 50 prepared form copolymer 48 and TEMPO-based alkoxyamine-terminated polystyrene 49 [40].
Alkyl radicals have also been prepared by reaction of alkylbromides with photolytically generated Re(CO)5 (from Re2(CO)io) [17], photolysis of cobalt-alkyl complexes [20], photolysis of AIBN [17, 21, 22] or thermolysis of TEMPO adducts [23]. [Pg.214]

One of the most efficient methods for oxidation of primary alcohols to either aldehydes or carboxylic acids is the one, commonly known as the Anelli oxidation. This reaction is carried out in a two-phase (CH2Cl2/aq.buffer) system utilizing TEMPO/NaBr as a catalyst and NaOCl as the terminal oxidant The new system described here is an extension of the Anelli oxidation, but surprisingly, does not require the use of any organic solvents and replaces the KBr co-catalyst with the more benign, Na2B40y (Borax). The use of the new cocatalyst reduces the volume of the buffer solution and eliminates completely the need of a reaction solvent. The new system was successfully applied in the industrial synthesis of the 3,3-Dimethylbutanal, which is a key intermediate in the preparation of the new artificial sweetener Neotame. [Pg.141]


See other pages where TEMPO preparation is mentioned: [Pg.321]    [Pg.480]    [Pg.321]    [Pg.480]    [Pg.541]    [Pg.626]    [Pg.71]    [Pg.265]    [Pg.457]    [Pg.504]    [Pg.525]    [Pg.41]    [Pg.42]    [Pg.77]    [Pg.228]    [Pg.127]    [Pg.251]    [Pg.428]    [Pg.57]    [Pg.100]    [Pg.506]    [Pg.16]    [Pg.353]    [Pg.423]    [Pg.34]    [Pg.249]    [Pg.509]    [Pg.26]    [Pg.16]    [Pg.110]    [Pg.4]    [Pg.165]    [Pg.7]   
See also in sourсe #XX -- [ Pg.776 ]




SEARCH



TEMPO

© 2024 chempedia.info