Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tanks ethylene

National Emission Standards for Coke Oven Batteries National Perchloroethylene Air Emission Standards for Dry Cleaning Facilities National Emission Standards for Chromium Emissions from Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks Ethylene Oxide Emissions Standards for Sterilization Facilities... [Pg.13]

The organic and aqueous phases are prepared in separate tanks before transferring to the reaction ketde. In the manufacture of a styrenic copolymer, predeterrnined amounts of styrene (1) and divinylbenzene (2) are mixed together in the organic phase tank. Styrene is the principal constituent, and is usually about 90—95 wt % of the formulation. The other 5—10% is DVB. It is required to link chains of linear polystyrene together as polymerization proceeds. DVB is referred to as a cross-linker. Without it, functionalized polystyrene would be much too soluble to perform as an ion-exchange resin. Ethylene—methacrylate [97-90-5] and to a lesser degree trivinylbenzene [1322-23-2] are occasionally used as substitutes for DVB. [Pg.373]

Some slurry processes use continuous stirred tank reactors and relatively heavy solvents (57) these ate employed by such companies as Hoechst, Montedison, Mitsubishi, Dow, and Nissan. In the Hoechst process (Eig. 4), hexane is used as the diluent. Reactors usually operate at 80—90°C and a total pressure of 1—3 MPa (10—30 psi). The solvent, ethylene, catalyst components, and hydrogen are all continuously fed into the reactor. The residence time of catalyst particles in the reactor is two to three hours. The polymer slurry may be transferred into a smaller reactor for post-polymerization. In most cases, molecular weight of polymer is controlled by the addition of hydrogen to both reactors. After the slurry exits the second reactor, the total charge is separated by a centrifuge into a Hquid stream and soHd polymer. The solvent is then steam-stripped from wet polymer, purified, and returned to the main reactor the wet polymer is dried and pelletized. Variations of this process are widely used throughout the world. [Pg.384]

An independent development of a high pressure polymerization technology has led to the use of molten polymer as a medium for catalytic ethylene polymerization. Some reactors previously used for free-radical ethylene polymerization at a high pressure (see Olefin polymers, low density polyethylene) have been converted to accommodate catalytic polymerization, both stirred-tank and tubular autoclaves operating at 30—200 MPa (4,500—30,000 psig) and 170—350°C (57,83,84). CdF Chimie uses a three-zone high pressure autoclave at zone temperatures of 215, 250, and 260°C (85). Residence times in all these reactors are short, typically less than one minute. [Pg.387]

The reactivity of ethylene is high, whereas that of propylene is low and the various dienes have different polymerisation reactivities. The viscous mbber solution contains some unpolymerised ethylene, propylene, unpolymerised diene, and about 10% EPDM, all in homogeneous solution. This solution is passed continuously into a flash tank, where reduced pressure causes most of the unpolymerised monomers to escape as gases, which are collected and recycled. [Pg.504]

Storage tanks should be designed in accordance with the ASME code for unfited pressure vessels. AH-welded constmction is recommended. Ethylene oxide storage tanks should be electrically grounded, isolated from potential fire hazards, and equipped with pressure rehef devices. New equipment should be cleaned of iron oxide and immediately purged with inert gas. [Pg.462]

Ethylene oxide storage tanks ate pressurized with inert gas to keep the vapor space in a nonexplosive region and prevent the potential for decomposition of the ethylene oxide vapor. The total pressure that should be maintained in a storage tank increases with Hquid temperature, since the partial pressure of ethylene oxide will also increase. Figure 5 shows the recommended minimum storage pressures for Hquid ethylene oxide under nitrogen or methane blanketing gas. [Pg.462]

Polymerization processes are characterized by extremes. Industrial products are mixtures with molecular weights of lO" to 10. In a particular polymerization of styrene the viscosity increased by a fac tor of lO " as conversion went from 0 to 60 percent. The adiabatic reaction temperature for complete polymerization of ethylene is 1,800 K (3,240 R). Heat transfer coefficients in stirred tanks with high viscosities can be as low as 25 W/(m °C) (16.2 Btu/[h fH °F]). Reaction times for butadiene-styrene rubbers are 8 to 12 h polyethylene molecules continue to grow lor 30 min whereas ethyl acrylate in 20% emulsion reacts in less than 1 min, so monomer must be added gradually to keep the temperature within hmits. Initiators of the chain reactions have concentration of 10" g mol/L so they are highly sensitive to poisons and impurities. [Pg.2102]

Flashback tests incorporate a flame arrester on top of a tank, with a large plastic bag surrounding the flame arrester. A specific gas mixture (for example, propane, ethylene, or hydrogen at the most sensitive composition in air) flows through and fills the tank and the bag. Deflagration flames initiated in the bag (three at different bag locations) must not pass through the flame arrester into the tank. On the unpro-tec ted side, piping and attachments such as valves are included as intended for installation a series of tests—perhaps ten—is conducted. [Pg.2304]

In the i-l. three-necked flask A (Fig. 2) is placed 550 cc. (4.25 moles) of 46 per cent hydrobromic acid (sp. g. 1.46) (Note i). Ethylene oxide (Note 2) is led into the acid solution as indicated in the diagram. The tank is arranged on a balance so that the amount of ethylene oxide which is used can be weighed. B is a U-tube containing water to indicate the rate of flow of the gas. Z) is a glass coil surrounded by ice and salt which cools the gas nearly to the liquefaction temperature. C is another U-tube containing water which shows whether or not the gas is being completely ab.sorbed. [Pg.12]

A convenient arrangement consists of placing the ethylene oxide tank on suitable scales and noting the proper decrease in weight. The gas may be passed through a short tower filled with soda lime and then through a spiral condenser surrounded with salt and ice. [Pg.56]

The resultant yellow sodium cellulose xanthate is dispersed in an aqueous caustic soda solution, where some hydrolysis occurs. This process is referred to as ripening and the solution as viscose . When the hydrolysis has proceeded sufficiently the solution it transferred to a hopper from which it emerges through a small slit on to a roller immersed in a tank of 10-15% sulphuric acid and 10-20% sodium sulphate at 35-40°C. The viscose is coagulated and by completion of the hydrolysis the cellulose is regenerated. The foil is subsequently washed, bleached, plasticised with ethylene glycol or glycerol and then dried. [Pg.633]

Sinee the reaetors were a series of baffled tanks, Case 1 is most likely. Case 2 ean be evaluated quantitatively by using the kineties applieable to the reaetion and making suitable ehanges to allow for the reeyeling of ethylene glyeol. Case 3 is extremely unlikely beeause the impurities formed are water-soluble and should, therefore, be removed by the water purged from the system. [Pg.422]

Many accidents occur because process materials flow in the wrong direction. Eor example, ethylene oxide and ammonia were reacted to make ethanolamine. Some ammonia flowed from the reactor in the opposite direction, along the ethylene oxide transfer line into the ethylene oxide tank, past several non-return valves and a positive displacement pump. It got past the pump through the relief valve, which discharged into the pump suction line. The ammonia reacted with 30m of ethylene oxide in the tank, which ruptured violently. The released ethylene oxide vapor exploded causing damage and destruction over a wide area [5]. A hazard and operability study might have disclosed the fact that reverse flow could occur. [Pg.996]

As the cold vapor flowed up the stack, it met condensate flowing down. The condensate froze and completely blocked the 8-in.-diameter stack. The tank was overpressured and ruptured. Fortunately, the rupture was a small one and the escaping ethylene did not ignite. It was dispersed with steam while the tank was emptied. [Pg.58]

Figure 2-6. Liquid ethylene tank venting arrangements. Figure 2-6. Liquid ethylene tank venting arrangements.
Storage tanks containing ethylene oxide are usually inerted with nitrogen. One plant used nitrogen made by cracking ammonia. The nitrogen contained traces of ammonia, which catalyzed an explosive decomposition of the ethylene oxide. Similar decompositions have been set off by traces of other bases, chlorides, and rust. [Pg.385]

BSI Tank and plastic bag Propane, Ethylene, hydrogen 10 Atmospheric Yes, if specified... [Pg.163]


See other pages where Tanks ethylene is mentioned: [Pg.265]    [Pg.98]    [Pg.428]    [Pg.514]    [Pg.363]    [Pg.408]    [Pg.333]    [Pg.384]    [Pg.388]    [Pg.401]    [Pg.321]    [Pg.322]    [Pg.528]    [Pg.66]    [Pg.295]    [Pg.444]    [Pg.445]    [Pg.127]    [Pg.157]    [Pg.80]    [Pg.97]    [Pg.55]    [Pg.59]    [Pg.60]    [Pg.420]    [Pg.917]    [Pg.58]    [Pg.88]    [Pg.90]    [Pg.259]    [Pg.268]    [Pg.90]   
See also in sourсe #XX -- [ Pg.45 , Pg.47 ]




SEARCH



Ethylene oxide portable tanks

Ethylene oxide tank cars

Refrigerated ethylene tank

Safety on a Refrigerated Ethylene Tank

© 2024 chempedia.info