Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthetic polymers transfer

The unique power of synthesis is the ability to create new molecules and materials with valuable properties. This capacity can be used to interact with the natural world, as in the treatment of disease or the production of food, but it can also produce compounds and materials beyond the capacity of living systems. Our present world uses vast amounts of synthetic polymers, mainly derived from petroleum by synthesis. The development of nanotechnology, which envisions the application of properties at the molecular level to catalysis, energy transfer, and information management has focused attention on multimolecular arrays and systems capable of self-assembly. We can expect that in the future synthesis will bring into existence new substances with unique properties that will have impacts as profound as those resulting from syntheses of therapeutics and polymeric materials. [Pg.1343]

Owing to the fact that organic substances have to be separated from a complex sample, transferred to the mass spectrometer target and desorbed, it seems impossible so far to analyse cross-linked binding media from artwork (e.g. dried oil, aged proteins, cross-linked synthetic polymers). Application of classical methods of sample treatment for... [Pg.159]

The effect of pore size on CEC separation was also studied in detail [70-75]. Figure 9 shows the van Deemter plots for a series of 7-pm ODS particles with pore size ranging from 10 to 400 nm. The best efficiency achieved with the large pore packing led to a conclusion that intraparticle flow contributes to the mass transfer in a way similar to that of perfusion chromatography and considerably improves column efficiency. The effect of pore size is also involved in the CEC separations of synthetic polymers in size-exclusion mode [76]. [Pg.18]

These Ionic reactions or electron transfer reactions are not what generally occur in the structure of both natural and synthetic polymers. In polymers it is the covalent bond that dominates, and in a covalently bonded structure there is no transfer of electrons from one atom to another. Instead the electrons are shared between the adjacent atoms In the molecule. The commercial polymeric materials that will be covered In this text will generally be based on seven atomic species silicon, hydrogen, chlorine, carbon, oxygen, nitrogen, and sulfur. Figure 2.4 shows these atoms with the number of outer valance electrons. [Pg.30]

Apart from the all-carbon backbone, poly(vinyl ester)s also exhibit a unique 1,3-diol structure (see Fig. 1). This structure is a common motif in many natural materials, e.g. carbohydrates. A number of oxidative or reductive electron transfer processes catalysed by natural redox systems are imaginable for this motif. The 1,3-diol structure is unique for a synthetic polymer and cannot be found in any other synthetic polymer class of significance. This explains the unusual biodegradation properties discussed below. [Pg.145]

Atom Transfer Radical Polymerisation (ATRP) was discovered independently by Wang and Matyjaszewski, and Sawamoto s group in 1995. Since then, this field has become a hot topic in synthetic polymer chemistry, with over 1000 papers published worldwide and more than 100 patent applications filed to date. ATRP is based on Kharasch chemistry overall it involves the insertion of vinyl monomers between the R-X bond of an alkyl halide-based initiator. At any given time in the reaction, most of the polymer chains are capped with halogen atoms (Cl or Br), and are therefore dormant and do not propagate see Figure 1. [Pg.21]

Abstract Transferases are enzymes that catalyze reactions in which a group is transferred from one compound to another. This makes these enzymes ideal catalysts for polymerization reactions. In nature, transferases are responsible for the synthesis of many important natural macromolecules. In synthetic polymer chemistry, various transferases are used to synthesize polymers in vitro. This chapter reviews some of these approaches, such as the enzymatic polymerization of polyesters, polysaccharides, and polyisoprene. [Pg.21]

Concentration Plus Solvent Transfer. Concentration of the organic solutes is essential to the determination of many organic contaminants present in water at very trace levels. The solvent transfer is needed for implementation of the separation and detection schemes that do not tolerate the water matrix. For bioassay work, concentration and solvent transfer are also needed because the amounts are too low for direct testing of the water solutions, and dimethyl sulfoxide. (DMSO) is the preferred solvent. In bioassay studies that involve animal exposure, the concentration scheme must accommodate very large volumes of water. Theoretically and practically, these elements of the analytical and bioassay methodologies can be achieved by using solid adsorbents, especially synthetic polymers. [Pg.206]

An important group of surface-active nonionic synthetic polymers (nonionic emulsifiers) are ethylene oxide (block) (co)polymers. They have been widely researched and some interesting results on their behavior in water have been obtained [33]. Amphiphilic PEO copolymers are currently of interest in such applications as polymer emulsifiers, rheology modifiers, drug carriers, polymer blend compatibilizers, and phase transfer catalysts. Examples are block copolymers of EO and styrene, graft or block copolymers with PEO branches anchored to a hydrophilic backbone, and star-shaped macromolecules with PEO arms attached to a hydrophobic core. One of the most interesting findings is that some block micelle systems in fact exists in two populations, i.e., a bimodal size distribution. [Pg.20]

The 2,2,6,6-tetramethylpiperidinoxyl (TEMPO) radical was first prepared in 1960 by Lebedev and Kazarnovskii by oxidation of its piperidine precursor. TEMPO is a highly persistent radical, resistant to air and moisture, which is stabilized primarily by the steric hindrance of the NO-bond. Paramagnetic TEMPO radicals can be used as powerful spin probes for investigating the structure and dynamics of biopolymers such as proteins, DNA, and synthetic polymers by ESR spectroscopy [7]. A versatile redox chemistry has been reported for TEMPO radicals. The radical species can be transformed by two-electron reduction into the respective hydroxyl-amine or by two-electron oxidation into the oxoammonium salt [8]. One-electron oxidations involving oxoammonium salts have also been postulated [9]. The TEMPO radical is usually employed under phase-transfer conditions with, e.g., sodium hypochlorite as activating oxidant in the aqueous phase. In oxidations of primary alcohols carboxylic acids are often formed by over-oxidation, in addition to the de-... [Pg.279]


See other pages where Synthetic polymers transfer is mentioned: [Pg.108]    [Pg.490]    [Pg.788]    [Pg.81]    [Pg.110]    [Pg.171]    [Pg.194]    [Pg.52]    [Pg.360]    [Pg.425]    [Pg.89]    [Pg.416]    [Pg.214]    [Pg.489]    [Pg.497]    [Pg.167]    [Pg.7]    [Pg.23]    [Pg.49]    [Pg.100]    [Pg.124]    [Pg.103]    [Pg.103]    [Pg.33]    [Pg.22]    [Pg.75]    [Pg.108]    [Pg.14]    [Pg.112]    [Pg.309]    [Pg.10]    [Pg.145]    [Pg.222]    [Pg.274]    [Pg.75]    [Pg.168]    [Pg.214]    [Pg.169]    [Pg.50]    [Pg.526]    [Pg.22]   
See also in sourсe #XX -- [ Pg.137 ]




SEARCH



Polymer Synthetic polymers

Synthetic polymers

© 2024 chempedia.info