Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene synthetic polymers

The potential use of cellulose graft polymers to compatibilize the linking of a natural polymer (wood) with a synthetic polymer (polystyrene) is based on... [Pg.341]

Alternatively the ion exchanger may be a synthetic polymer, for example a sulphonated polystyrene, where the negative charges are carried on the —SO3 ends, and the interlocking structure is built up by cross-linking between the carbon atoms of the chain. The important property of any such solid is that the negative charge is static—a part of the solid—whilst the positive ions can move from their positions. Suppose, for example, that the positive ions are... [Pg.274]

AUoys of ceUulose with up to 50% of synthetic polymers (polyethylene, poly(vinyl chloride), polystyrene, polytetrafluoroethylene) have also been made, but have never found commercial appUcations. In fact, any material that can survive the chemistry of the viscose process and can be obtained in particle sizes of less than 5 p.m can be aUoyed with viscose. [Pg.350]

Styrene—butadiene elastomers, emulsion and solution types combined, are reported to be the largest-volume synthetic mbber, with 28.7% of the world consumption of all synthetic mbber in 1994 (38). This percentage has decreased steadily since 1973 when SBR s market share was 57% (39). The decline has been attributed to the switch to radial tires (longer milage) and the growth of other synthetic polymers, such as polyethylene, polypropylene, polyester, and polystyrene. Since 1985, production of SBR has been flat (Table 3). [Pg.499]

Acrylic Resins. The first synthetic polymer denture material, used throughout much of the 20th century, was based on the discovery of vulcanised mbber in 1839. Other polymers explored for denture and other dental uses have included ceUuloid, phenolformaldehyde resins, and vinyl chloride copolymers. Polystyrene, polycarbonates, polyurethanes, and acryHc resins have also been used for dental polymers. Because of the unique combination of properties, eg, aesthetics and ease of fabrication, acryHc resins based on methyl methacrylate and its polymer and/or copolymers have received the most attention since their introduction in 1937. However, deficiencies include excessive polymerization shrinkage and poor abrasion resistance. Polymers used in dental appHcation should have minimal dimensional changes during and subsequent to polymerization exceUent chemical, physical, and color stabiHty processabiHty and biocompatibiHty and the abiHty to blend with contiguous tissues. [Pg.488]

We ve seen on several occasions in previous chapters that a polymer, whether synthetic or biological, is a large molecule built up by repetitive bonding together of many smaller units, or monomers. Polyethylene, for instance, is a synthetic polymer made from ethylene (Section 7.10), nylon is a synthetic polyamide made from a diacid and a diamine (Section 21.9), and proteins are biological polyamides made from amino acids. Note that polymers are often drawn by indicating their repeating unit in parentheses. The repeat unit in polystyrene, for example, comes from the monomer styrene. [Pg.1206]

Whereas GALDI-MS detects low molecular weight synthetic resins, common synthetic polymers, such as various acrylic polymers, polystyrene, and cellulose nitrate, did not produce any mass spectra using this method. [Pg.159]

The first purely Synthetic polymer was the phenolformaldehyde family of synthetic resins discovered by Baekeland in Germany and first produced commercially in 1907. In 1930, polystyrene was first manufactured in Germany. [Pg.45]

Charcoal is a non-polar adsorbent that will bind large or non-polar molecules from an aqueous solution, but its effects are not very predictable. However, several synthetic non-polar adsorbents have been developed, known as XAD resins, which are synthetic polymers, often polystyrene based. They are used mainly as preparative media for extracting substances from samples which, after washing the resin, can be eluted from it with a polar organic solvent. [Pg.99]

Macrogel Semi-rigid polystyrene Synthetic polymers... [Pg.114]

MALDI is the method of choice for the analysis of synthetic polymers because it usually provides solely intact and singly charged [62] quasimolecular ions over an essentially unlimited mass range. [22,23] While polar polymers such as poly(methylmethacrylate) (PMMA), [83,120] polyethylene glycol (PEG), [120,121] and others [79,122,123] readily form [M+H] or [M+alkali] ions, nonpolar polymers like polystyrene (PS) [99,100,105,106] or non-functionalized polymers like polyethylene (PE) [102,103] can only be cationized by transition metal ions in their l-t oxidation state. [99,100] The formation of evenly spaced oligomer ion series can also be employed to establish an internal mass calibration of a spectrum. [122]... [Pg.425]

To the best of our knowledge, the supercoil conformation of the monoden-dron jacketed polystyrene is one of the first observations of a defined tertiary structure in synthetic polymers. The plectoneme conformation could be caused by underwinding or overwinding of a backbone from its equilibrium state [168]. Quick evaporation of the solvent certainly can cause a residual torsion in the molecule as it contracted in itself. Unlike macroconformations of biomolecules, where the tertiary structures are often stabilized by specific interactions between side groups, the supercoil of the monodendron jacketed polymers is metastable. Eventually, annealing offered a path for the stress relaxation and allowed the structural defects to heal [86]. [Pg.160]

Obviously, there is no accumulation of natural polymers because they are recycled by biological degradation to CO2. This is then assimilated and reincorporated into biomass by photosynthesis. On the other hand, persistence is a well known property of most synthetic polymers, e.g. polyethylene (PE) and polystyrene (PS). [Pg.94]

Isophorone is a solvent for a large number of natural and synthetic polymers, resins, waxes, fats, and oils. Specifically, it is used as a solvent for concentrated vinyl chloride/acetate-based coating systems for metal cans, other metal paints, nitrocellulose finishes, printing inks for plastics, some herbicide and pesticide formulations, and adhesives for plastics, poly(vinyl) chloride and polystyrene materials (Papa and Sherman 1981). Isophorone also is an intermediate in the synthesis of 3, 5-xylenol, 3, 3, 5-trimethylcyclohexanol (Papa and Sherman 1981), and plant growth retardants (Haruta et al. 1974). Of the total production, 45-65% is used in vinyl coatings and inks, 15-25% in agricultural formulations, 15-30% in miscellaneous uses and exports, and 10% as a chemical intermediate (CMA 1981). [Pg.69]

Phillips catalysts for linear polyethylene and polypropylene and the graft copolymerizations for impact polystyrene and ABS are even younger and have not yet spread into the less industrialized countries of world. The production of polyolefins, poly (vinyl chloride), and styrene resins on a worldwide basis as well as of all synthetic polymers is shown in Figure 3. A comparison of the U.S. production in Figure 1 and in Figure 3 demonstrates the effect of age and dissemination of technology. It shows that relatively more poly (vinyl chloride) but less polyolefins and styrene resins are produced worldwide than in this country. [Pg.9]


See other pages where Polystyrene synthetic polymers is mentioned: [Pg.185]    [Pg.185]    [Pg.446]    [Pg.75]    [Pg.317]    [Pg.121]    [Pg.433]    [Pg.323]    [Pg.324]    [Pg.68]    [Pg.37]    [Pg.111]    [Pg.111]    [Pg.111]    [Pg.417]    [Pg.301]    [Pg.388]    [Pg.92]    [Pg.114]    [Pg.709]    [Pg.262]    [Pg.15]    [Pg.20]    [Pg.267]    [Pg.49]    [Pg.51]    [Pg.140]    [Pg.479]    [Pg.33]    [Pg.354]    [Pg.8]    [Pg.446]    [Pg.177]    [Pg.131]    [Pg.132]    [Pg.84]   
See also in sourсe #XX -- [ Pg.47 ]

See also in sourсe #XX -- [ Pg.234 , Pg.236 , Pg.241 , Pg.243 , Pg.246 ]




SEARCH



Polymer Synthetic polymers

Polystyrene polymers

Synthetic polymers

© 2024 chempedia.info