Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthesis, asymmetric enantioselective reactions

Asymmetric synthesis has been extensively developed during the last few decades. Steric approach control is a reliable and generally applicable principle for the development of asymmetric synthesis. Highly enantioselective reaction is expected if one of the two potentially reactive enantiofaces is effectively shielded by steric interaction (Fig. la decelerative selectivity). On the other hand, steric approach control may not be an effective strategy for site-selective functionalization... [Pg.204]

As mentioned in Sect. 2.2, phosphine oxides are air-stable compounds, making their use in the field of asymmetric catalysis convenient. Moreover, they present electronic properties very different from the corresponding free phosphines and thus may be employed in different types of enantioselective reactions, m-Chloroperbenzoic acid (m-CPBA) has been showed to be a powerful reagent for the stereospecific oxidation of enantiomerically pure P-chirogenic phos-phine-boranes [98], affording R,R)-97 from Ad-BisP 6 (Scheme 18) [99]. The synthesis of R,R)-98 and (S,S)-99, which possess a f-Bu substituent, differs from the precedent in that deboranation precedes oxidation with hydrogen peroxide to yield the corresponding enantiomerically pure diphosphine oxides (Scheme 18) [99]. [Pg.25]

This method has been applied in the enantioselective synthesis of d-erythro-sphingosine and phytosphingosine. Sphingosine became an important substance for studying signal transduction since the discovery of protein kinase C inhibition by this compound.48 Many efforts have been made to synthesize sphingosine and its derivatives.49 Kobayashi et al. reported another route to this type of compound in which a Lewis acid-catalyzed asymmetric aldol reaction was a key step. [Pg.158]

In the synthesis of D-eryt/zro-sphingosine (78 without BOC protection), the key step is the asymmetric aldol reaction of trimethylsilylpropynal 75 with ke-tene silyl acetal 76 derived from a-benzyloxy acetate. The reaction was carried out with 20 mol% of tin(II) triflate chiral diamine and tin(II) oxide. Slow addition of substrates to the catalyst in propionitrile furnishes the desired aldol adduct 77 with high diastereo- and enantioselectivity (syn/anti = 97 3, 91% ee for syn). In the synthesis of protected phytosphingosine (80, OH and NH2 protected as OAc and NHAc, respectively), the asymmetric aldol reaction is again employed as the key step. As depicted in Scheme 3-27, the reaction between acrolein and ketene silyl aectal 76 proceeds smoothly, affording the desired product 80 with 96% diastereoselectivity [syn/anti = 98 2) and 96% ee for syn (Scheme 3-27).50... [Pg.158]

Although the application of carboalumination to the synthesis of natural products is still in its infancy, a few preliminary results shown in Scheme 1.50 [167,168,171,172] suggest that it promises to become a major asymmetric synthetic reaction, provided that (i) the singularly important case of methylalumination can be made to proceed with S90% ee, and (ii) satisfactory and convenient methods for enantiomeric and diastereo-meric separation/purification can be developed. In this context, significant increases in ee in the synthesis of methyl-substituted alkanols from around 75 % to 90—93 % achieved through some strategic modifications are noteworthy (Scheme 1.50) [168]. Shortly before the discovery of the Zr-catalyzed enantioselective carboalumination, a fundamentally discrete Zr-catalyzed asymmetric reaction of allylically heterosubstituted alkenes proceeding via cyclic carbozirconation was reported, as discussed later in this section. [Pg.30]

Asymmetric catalysis is a vital and rapidly growing branch of modern organic chemistry. Within this context, Ti- and Zr-based chiral catalysts have played a pivotal role in the emergence of a myriad of efficient and enantioselective protocols for asymmetric synthesis. In this chapter, a critical overview of enantioselective reactions promoted by chiral Zr-based catalysts is provided. Since an account of this type is most valuable when it provides a context for advances made in a particular area of research, when appropriate, a brief discussion of related catalytic asymmetric reactions promoted by non-Zr-based catalysts is presented as well. [Pg.180]

Hoveyda in his essay on asymmetric catalysis in target-oriented synthesis (p 145). The concept of catalysis-based total synthesis, in which a series of catalytic enantioselective reactions are employed in combination with other catalytic reactions, is emerging as the desirable way to make complex natural products and medidnally-important target compounds. [Pg.2]

This article provides a brief overview of several recent total syntheses of natural and unnatural products that have benefited from the use of catalytic asymmetric processes. The article is divided by the type of bond formation that the catalytic enan-tioselective reaction accomplishes (e.g C-C or C-0 bond formation). Emphasis is made on instances where a catalytic asymmetric reaction is utilized at a critical step (or steps) within a total synthesis however, cases where catalytic enantioselective transformations are used to prepare the requisite chiral non-racemic starting materials are also discussed. At the close of the article, two recent total syntheses are examined, where asymmetric catalytic reactions along with a number of other catalyzed processes are the significant driving force behind the successful completion of these efforts (Catalysis-Based Total Syntheses). [Pg.146]

Enantioselective -Functionalization of Aldehydes and Ketones The direct and enantiosective functionalization of enolates or enolate equivalents with carbon-, nitrogen-, oxygen-, sulfur- or halogen-centered electrophiles represents a powerful transformation of chemical synthesis and of fundamental importance to modem practitioners of asymmetric molecule constmction. Independent studies from List, J0rgensen, Cordova, Hayashi, and MacMiUan have demonstrated the power of enamine catalysis, developing catalytic enantioselective reactions such as... [Pg.330]

The development of enantioselective aldol reactions has been widely studied in conjunction with the synthesis of natural products. Highly enantioselective aldol reactions have been achieved by employing chiral enolates of ethyl ketones and propionic acid derivatives.(1) On the other hand, achieving high asymmetric induction in the asymmetric aldol reaction of methyl ketones is still a problem.(2)... [Pg.290]

The use of chiral 2-alkylidene-l,3-dithiane 1,3-dioxides in asymmetric cycloaddition reactions has been demonstrated. A highly enantioselective synthesis of (—)-cispentacin by an intramolecular 1,3-dipolar cycloaddition was reported (Scheme 52) <20020L1227, 20030BC684>. [Pg.797]

Asymmetric synthesis, either enantioselective or diastereoselective, has seldom been performed by photochemical reactions. One of the first examples that may be classified as a photochemical asymmetric synthesis is the photoalkylation of the most simple amino acid, glycine. Elad and Sperling 220) demonstrated that, if glycine is part of a polypeptide chain, there is good control (up to 40 % e.e.) in the creation of the new chiral center. A radical mechanism operates after the first step of photoinitiation of the process. [Pg.225]


See other pages where Synthesis, asymmetric enantioselective reactions is mentioned: [Pg.269]    [Pg.391]    [Pg.422]    [Pg.247]    [Pg.265]    [Pg.313]    [Pg.2]    [Pg.241]    [Pg.116]    [Pg.208]    [Pg.540]    [Pg.255]    [Pg.4]    [Pg.263]    [Pg.854]    [Pg.135]    [Pg.202]    [Pg.518]    [Pg.106]    [Pg.122]    [Pg.145]    [Pg.152]    [Pg.46]    [Pg.11]    [Pg.25]    [Pg.221]    [Pg.267]    [Pg.173]    [Pg.293]    [Pg.72]    [Pg.186]    [Pg.288]    [Pg.791]    [Pg.452]    [Pg.142]    [Pg.324]    [Pg.52]   
See also in sourсe #XX -- [ Pg.171 ]




SEARCH



Asymmetric enantioselectivity

Asymmetric synthesis reactions

Enantioselective asymmetric synthesis

Enantioselective reaction

Enantioselective reactions synthesis

Enantioselectivity asymmetric reactions

Enantioselectivity asymmetrical reaction

Further Application of Asymmetric Wittig-type Reactions in Enantioselective Synthesis

Synthesis enantioselective

© 2024 chempedia.info