Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synaptic Vesicle Neurotransmitter Transporters

Synaptic vesicle neurotransmitter transporters VMAT1 VMAT2 VGAT/VIAAT VGLUT1 VGLUT2 VGLUT3 VAChT... [Pg.1279]

The exocytotic release of neurotransmitters from synaptic vesicles underlies most information processing by the brain. Since classical neurotransmitters including monoamines, acetylcholine, GABA, and glutamate are synthesized in the cytoplasm, a mechanism is required for their accumulation in synaptic vesicles. Vesicular transporters are multitransmembrane domain proteins that mediate this process by coupling the movement of neurotransmitters to the proton electrochemical gradient across the vesicle membrane. [Pg.1279]

Together with dopamine, adrenaline and noradrenaline belong to the endogenous catecholamines that are synthesized from the precursor amino acid tyrosine (Fig. 1). In the first biosynthetic step, tyrosine hydroxylase generates l-DOPA which is further converted to dopamine by the aromatic L-amino acid decarboxylase ( Dopa decarboxylase). Dopamine is transported from the cytosol into synaptic vesicles by a vesicular monoamine transporter. In sympathetic nerves, vesicular dopamine (3-hydroxylase generates the neurotransmitter noradrenaline. In chromaffin cells of the adrenal medulla, approximately 80% of the noradrenaline is further converted into adrenaline by the enzyme phenylethanolamine-A-methyltransferase. [Pg.42]

Synaptic Transmission. Figure 1 Synaptic transmission. The presynaptic terminal contains voltage-dependent Na Superscript and Ca2+ channels, vesicles with a vesicular neurotransmitter transporter VNT, a plasmalemmal neurotransmitter transporter PNT, and a presynaptic G protein-coupled receptor GPCR with its G protein and its effector E the inset also shows the vesicular H+ pump. The postsynaptic cell contains two ligand-gated ion channels LGIC, one for Na+ and K+ and one for Cl-, a postsynaptic GPRC, and a PNT. In this synapse, released transmitter is inactivated by uptake into cells. [Pg.1171]

The amphetamine-like properties of trace amines are best described for PEA which shares close structural similarity to amphetamine and can displace monoamine neurotransmitters from synaptic vesicles and trigger their release into the synaptic cleft by acting on the dopamine transporter. However, this effect is only observed at high, supra-physiological PEA concentrations and thus might not occur under physiological conditions. [Pg.1220]

Synaptic vesicles isolated from brain exhibit four distinct vesicular neurotransmitter transport activities one for monoamines, a second for acetylcholine, a third for the inhibitory neurotransmitters GABA and glycine, and a fourth for glutamate [1], Unlike Na+-dependent plasma membrane transporters, the vesicular activities couple to a proton electrochemical gradient (A. lh+) across the vesicle membrane generated by the vacuolar H+-ATPase ( vacuolar type proton translocating ATPase). Although all of the vesicular transport systems rely on ApH+, the relative dependence on the chemical and electrical components varies (Fig. 1). The... [Pg.1279]

The recovery of neurotransmitters from synaptic clefts and their storage in cytoplasmic vesicles is accomplished by the tandem actions of the secondary transporters in plasma and vesicular membranes. Sodium-dependent symporters mediate neurotransmitter reuptake from synaptic clefts into neurons and glia, whereas proton-dependent antiporters concentrate neurotransmitters from neuronal cytoplasm into synaptic vesicles (Fig. 5-13). [Pg.84]

Neurons constitute the most striking example of membrane polarization. A single neuron typically maintains thousands of discrete, functional microdomains, each with a distinctive protein complement, location and lifetime. Synaptic terminals are highly specialized for the vesicle cycling that underlies neurotransmitter release and neurotrophin uptake. The intracellular trafficking of a specialized type of transport vesicles in the presynaptic terminal, known as synaptic vesicles, underlies the ability of neurons to receive, process and transmit information. The axonal plasma membrane is specialized for transmission of the action potential, whereas the plasma... [Pg.140]

The supply of conventional neurotransmitters in small synaptic vesicles is replenished in nerve terminals by local synthesis, and many conventional neurotransmitters are recaptured after secretion. In striking contrast, neuropeptides are initially synthesized in the cell soma, sequestered within the lumen of the secretory pathway and transported down the axon while undergoing cleavages... [Pg.320]

In other examples, the amount of peptide available for release can be depleted by repeated firing of a terminal since new peptide must arrive by axonal transport, while new conventional neurotransmitters are synthesized or recaptured locally and transported into small synaptic vesicles. [Pg.329]

All botulin neurotoxins act in a similar way. They only differ in the amino-acid sequence of some protein parts (Prabakaran et al., 2001). Botulism symptoms are provoked both by oral ingestion and parenteral injection. Botulin toxin is not inactivated by enzymes present in the gastrointestinal tracts. Foodborne BoNT penetrates the intestinal barrier, presumably due to transcytosis. It is then transported to neuromuscular junctions within the bloodstream and blocks the secretion of the neurotransmitter acetylcholine. This results in muscle limpness and palsy caused by selective hydrolysis of soluble A-ethylmalemide-sensitive factor activating (SNARE) proteins which participate in fusion of synaptic vesicles with presynaptic plasma membrane. SNARE proteins include vesicle-associated membrane protein (VAMP), synaptobrevin, syntaxin, and synaptosomal associated protein of 25 kDa (SNAP-25). Their degradation is responsible for neuromuscular palsy due to blocks in acetylcholine transmission from synaptic terminals. In humans, palsy caused by BoNT/A lasts four to six months. [Pg.200]

Several of the neurotransmitters are small-molecule amines such as dopamine, serotonin, epinephrine, and norepinephrine. These neurotransmitters are synthesized in the cytoplasm of the axon terminal and subsequently transported into and stored within the synaptic vesicles. The amino acids glycine and glutamic acid are normal constituents of proteins and are present in abundance in the axons. These are also stored in synaptic vesicles. Each electrical impulse that arrives at the presynaptic side of a synapse will cause only a small minority of the synaptic vesicles to fuse with the plasma membrane and discharge their contents. The remaining synaptic vesicles remain, waiting for subsequent electrical impulses. At the same time, neurotransmitter synthesis continues, as does their storage in synaptic vesicles. This tends to restore the full complement of amine neurotransmitters at the axon terminal. [Pg.288]

The sequence of events that result in neurotransmission of information from one nerve cell to another across the s)mapses begins with a wave of depolarization which passes down the axon and results in the opening of the voltage-sensitive calcium charmels in the axonal terminal. These charmels are frequently concentrated in areas which correspond to the active sites of neurotransmitter release. A large (up to 100 M) but brief rise in the calcium concentration within the nerve terminal triggers the movement of the synaptic vesicles, which contain the neurotransmitter, towards the synaptic membrane. By means of specific membrane-bound proteins (such as synaptobrevin from the neuronal membrane and synaptotagrin from the vesicular membrane) the vesicles fuse with the neuronal membrane and release their contents into the synaptic gap by a process of exocytosis. Once released of their contents, the vesicle membrane is reformed and recycled within the neuronal terminal. This process is completed once the vesicles have accumulated more neurotransmitter by means of an energy-dependent transporter on the vesicle membrane (Table 2.3). [Pg.20]

It should be kept in mind that a single synapse may operate with as many as four transmitters simultaneously, in any combination of amine and peptide, or even peptide and peptide, within the groupings shown. The peptide neurotransmitters are stored separately, always in large synaptic vesicles are synthesized in the cell body of the neuron and are transported to the synapse after post-translational processing by fast (ATP-driven) transport systems. Amine neurotransmitters are synthesized in the synapse and are stored in small or large vesicles. Different populations of the same type of neurons may differ in their content of cotransmitters. [Pg.198]

Synaptic vesicles can be isolated in large quantities. Their composition is well known, and the proteins have been studied intensively. Indeed, much of what we know about exocytosis and vescular transport has been learned from investigation of synaptic vesicles.554 561 562 A small synaptic vesicle of 35 nm diameter will contain -10,000 phospholipid molecules in its membrane and only about 200 protein molecules, at least one of which must be a 13-subunit vacuolar type proton pump (Fig. 18-14). This pump acidifies the vacuole, allowing uptake of a neurotransmitter. Although many different proteins may be found in synaptic membranes, only about 15, which are listed in Table 30-6, are found in all synaptic vesicles and appear essential to function. [Pg.1777]


See other pages where Synaptic Vesicle Neurotransmitter Transporters is mentioned: [Pg.1174]    [Pg.1503]    [Pg.1174]    [Pg.524]    [Pg.1174]    [Pg.1503]    [Pg.1174]    [Pg.524]    [Pg.466]    [Pg.553]    [Pg.1170]    [Pg.1281]    [Pg.1282]    [Pg.1282]    [Pg.228]    [Pg.230]    [Pg.9]    [Pg.143]    [Pg.155]    [Pg.160]    [Pg.160]    [Pg.161]    [Pg.168]    [Pg.168]    [Pg.169]    [Pg.169]    [Pg.175]    [Pg.292]    [Pg.298]    [Pg.492]    [Pg.563]    [Pg.725]    [Pg.856]    [Pg.306]    [Pg.219]    [Pg.725]    [Pg.1778]   


SEARCH



Neurotransmitter transport

Neurotransmitter transporters

Synaptic

Synaptic vesicles

Transport vesicles

© 2024 chempedia.info