Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface tension composition

Recently developed blood oxygenators are disposable, used only once, and can be presterilized and coated with anticoagulant (e.g., heparin) when they are constructed. Normally, membranes with high gas permeabilities, such as silicone rubber membranes, are used. In the case of microporous membranes, which are also used widely, the membrane materials themselves are not gas permeable, but gas-liquid interfaces are formed in the pores of the membrane. The blood does not leak from the pores for at least several hours, due to its surface tension. Composite membranes consisting of microporous polypropylene and silicone rubber have also been developed. [Pg.258]

New Model for Calculating the Surface Tension of Slags. Figure 4a shows the surface tension of two slag constituents which are not surface active. For a binary mixture with one surface active component the surface tension-composition relationship will have the form of that shown in Figure 4b wlwre 2 denotes the surface-active constituent, f we assume that xY for component 1 is unaffected, then the term Y2X2 the partial molar contribution of the surface... [Pg.202]

In this theory the general medium and solvation effects are coupled through the solvation exchange constants K, and K2, which determine the composition of the solvation shell surrounding the solute, and thereby influence the surface tension in the solvation shell. But the situation is actually more complicated than this, for if surface tension-composition data ate fitted to eq. [8.2.26] the resulting equilibrium constants are not numerically the same as the solvation constants Kj and K2 evaluated from a solubility study in the same mixed solvent. Labeling the surface tension-derived constants K j and K 2, it is usually... [Pg.487]

A general prerequisite for the existence of a stable interface between two phases is that the free energy of formation of the interface be positive were it negative or zero, fluctuations would lead to complete dispersion of one phase in another. As implied, thermodynamics constitutes an important discipline within the general subject. It is one in which surface area joins the usual extensive quantities of mass and volume and in which surface tension and surface composition join the usual intensive quantities of pressure, temperature, and bulk composition. The thermodynamic functions of free energy, enthalpy and entropy can be defined for an interface as well as for a bulk portion of matter. Chapters II and ni are based on a rich history of thermodynamic studies of the liquid interface. The phase behavior of liquid films enters in Chapter IV, and the electrical potential and charge are added as thermodynamic variables in Chapter V. [Pg.1]

The principal point of interest to be discussed in this section is the manner in which the surface tension of a binary system varies with composition. The effects of other variables such as pressure and temperature are similar to those for pure substances, and the more elaborate treatment for two-component systems is not considered here. Also, the case of immiscible liquids is taken up in Section IV-2. [Pg.65]

Fig. III-9. Representative plots of surface tension versus composition, (a) Isooctane-n-dodecane at 30°C 1 linear, 2 ideal, with a = 48.6. Isooctane-benzene at 30°C 3 ideal, with a = 35.4, 4 ideal-like with empirical a of 112, 5 unsymmetrical, with ai = 136 and U2 = 45. Isooctane- Fig. III-9. Representative plots of surface tension versus composition, (a) Isooctane-n-dodecane at 30°C 1 linear, 2 ideal, with a = 48.6. Isooctane-benzene at 30°C 3 ideal, with a = 35.4, 4 ideal-like with empirical a of 112, 5 unsymmetrical, with ai = 136 and U2 = 45. Isooctane-<yclohexane at 30°C 6 ideal, with a = 38.4, 7 ideallike with empirical a of 109.3, (a values in A /molecule) (from Ref. 93). (b) Surface tension isotherms at 350°C for the systems (Na-Rb) NO3 and (Na-Cs) NO3. Dotted lines show the fit to Eq. ni-55 (from Ref. 83). (c) Water-ethanol at 25°C. (d) Aqueous sodium chloride at 20°C. (e) Interfacial tensions between oil and water in the presence of sodium dodecylchloride (SDS) in the presence of hexanol and 0.20 M sodium chloride. Increasing both the surfactant and the alcohol concentration decreases the interfacial tension (from Ref. 92).
We now come to a very important topic, namely, the thermodynamic treatment of the variation of surface tension with composition. The treatment is due to Gibbs [35] (see Ref. 49 for an historical sketch) but has been amplified in a more conveniently readable way by Guggenheim and Adam [105]. [Pg.71]

Smith [113] studied the adsorption of n-pentane on mercury, determining both the surface tension change and the ellipsometric film thickness as a function of the equilibrium pentane pressure. F could then be calculated from the Gibbs equation in the form of Eq. ni-106, and from t. The agreement was excellent. Ellipsometry has also been used to determine the surface compositions of solutions [114,115], as well polymer adsorption at the solution-air interface [116]. [Pg.78]

It was noted in connection with Eq. III-56 that molecular dynamics calculations can be made for a liquid mixture of rare gas-like atoms to obtain surface tension versus composition. The same calculation also gives the variation of density for each species across the interface [88], as illustrated in Fig. Ill-13b. The density profiles allow a calculation, of course, of the surface excess quantities. [Pg.80]

Make a theoretical plot of surface tension versus composition according to Eq. III-53, and compare with experiment. (Calculate the equivalent spherical diameter for water and methanol molecules and take o as the average of these.)... [Pg.95]

In any brazing/soldering process, a molten alloy comes in contact with a surface of solid, which may be an alloy, a ceramic, or a composite material (see Ceramics Composite materials). For a molten alloy to advance over the soHd surface a special relationship has to exist between surface energies of the hquid—gas, soHd—gas, and Hquid—soHd interfaces. The same relationships should, in principle, hold in joining processes where a molten alloy has to fill the gaps existing between surfaces of the parts to be joined. In general, the molten alloy should have a lower surface tension than that of the base material. [Pg.241]

Fluorocarbon soHds are rare in defoamer compositions, presumably on account of their cost. SoHd fluorine-containing fatty alcohols and amides are known. The most familiar fluorocarbon soHd is polytetrafluoroethylene [9002-84-0]. Because it is more hydrophobic than siHcone-treated siHca, it might be expected to perform impressively as a defoamer component (14). However, in conventional hydrocarbon oil formulations it works poorly because the particles aggregate strongly together. In lower surface tension fluids such as siHcone and fluorocarbon oils, the powdered polytetrafluoroethylene particles are much better dispersed and the formulation performs weU as a defoamer. [Pg.463]

In general, the surface tension of a Hquid mixture is not a simple function of the pure component surface tensions because the composition of the mixture surface is not the same as the bulk. For nonaqueous solutions of n components, the method of Winterfeld, Scriven, and Davi is apphcable ... [Pg.416]

Absorption and wetting. Generally, it is necessary for the adhesive resin to wet the substrate surfaces. The surface energy of the composite substrate must be greater than the surface energy or surface tension of the resin in order for effective wetting to occur. [Pg.1011]

The bulk properties of mixed solvents, especially of binary solvent mixtures of water and organic solvents, are often needed. Many dielectric constant measurements have been made on such binary mixtures. The surface tension of aqueous binary mixtures can be quantitatively related to composition. ... [Pg.391]

Surfactants are probably the materials which most affect the performance of alkali cleaners. Surfactants are complex chemicals which modify the solubility of various materials in, and their surface affinity for, oil and water. The diverse composite which makes up the surface of a metal object must be fully wetted out if the cleaner is to perform properly. Surfactants lower the surface tension to allow wetting out to occur. Oils and greases must either be dissolved off the surface or lifted from it surfactants assist in both areas. [Pg.284]

Molten salt investigation methods can be divided into two classes thermodynamic and kinetic. In some cases, the analysis of melting diagrams and isotherms of physical-chemical properties such as density, surface tension, viscosity and electroconductivity enables the determination of the ionic composition of the melt. Direct investigation of the complex structure is performed using spectral methods [294]. [Pg.135]

Other effects. In addition to the compound formation and ionisation effects which have been considered, it is also necessary to take account of so-called matrix effects. These are predominantly physical factors which will influence the amount of sample reaching the flame, and are related in particular to factors such as the viscosity, the density, the surface tension and the volatility of the solvent used to prepare the test solution. If we wish to compare a series of solutions, e.g. a series of standards to be compared with a test solution, it is clearly essential that the same solvent be used for each, and the solutions should not differ too widely in their bulk composition. This procedure is commonly termed matrix matching. [Pg.794]

These statements are only true when the liquid is a pure substance, i.e., does not change in composition during evaporation. This constancy of vapour-pressure serves to distinguish pure substances from solutions. The effects of surface tension, appearing when small droplets are used, and of electrification, must also be absent (cf. 100—102). [Pg.171]

The simplest technique introduced by Young as early as 1805 [18] is the measurement of the contact angle as a measure of surface tension and surface energy [1,19, 20,21], In many cases this gives an indication of surface composition and can be used to observe changes in composition, structure and/or roughness at the surface during a particular surface treatment. A quantitative description or distinction between different parameters is hardly possible in most cases. [Pg.365]

AOS at this proportion the micelle promotion tendency of AOS in the mixture is clearly optimal. At this composition, the authors have also observed a minimum in the surface tension vs. composition plot, and maximum performance benefits in detergency tests (see below). [Pg.375]


See other pages where Surface tension composition is mentioned: [Pg.301]    [Pg.1411]    [Pg.224]    [Pg.301]    [Pg.1411]    [Pg.224]    [Pg.110]    [Pg.235]    [Pg.96]    [Pg.145]    [Pg.430]    [Pg.44]    [Pg.17]    [Pg.451]    [Pg.100]    [Pg.242]    [Pg.246]    [Pg.237]    [Pg.452]    [Pg.312]    [Pg.483]    [Pg.329]    [Pg.335]    [Pg.23]    [Pg.557]    [Pg.695]    [Pg.1080]    [Pg.517]    [Pg.599]    [Pg.1130]    [Pg.334]   
See also in sourсe #XX -- [ Pg.165 ]




SEARCH



Composite surface

© 2024 chempedia.info