Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface solvent effects

Since capillary tubing is involved in osmotic experiments, there are several points pertaining to this feature that should be noted. First, tubes that are carefully matched in diameter should be used so that no correction for surface tension effects need be considered. Next it should be appreciated that an equilibrium osmotic pressure can develop in a capillary tube with a minimum flow of solvent, and therefore the measured value of II applies to the solution as prepared. The pressure, of course, is independent of the cross-sectional area of the liquid column, but if too much solvent transfer were involved, then the effects of dilution would also have to be considered. Now let us examine the practical units that are used to express the concentration of solutions in these experiments. [Pg.550]

At the shear plane, fluid motion relative to the particle surface is 2ero. For particles with no adsorbed surfactant or ionic atmosphere, this plane is at the particle surface. Adsorbed surfactant or ions that are strongly attracted to the particle, with their accompanying solvent, prevent Hquid motion close to the particle, thus moving the shear plane away from the particle surface. The effective potential at the shear plane is called the 2eta potential, It is smaller than the potential at the surface, but because it is difficult to determine 01 To usual assumption is that /q is effectively equal to which can be... [Pg.545]

Rizzuti et al. [Chem. Eng. Sci, 36, 973 (1981)] examined the influence of solvent viscosity upon the effective interfacial area in packed columns and concluded that for the systems studied the effective interfacial area a was proportional to the kinematic viscosity raised to the 0.7 power. Thus, the hydrodynamic behavior of a packed absorber is strongly affected by viscosity effects. Surface-tension effects also are important, as expressed in the work of Onda et al. (see Table 5-28-D). [Pg.624]

The continuum model, in which solvent is regarded as a continuum dielectric, has been used to study solvent effects for a long time [2,3]. Because the electrostatic interaction in a polar system dominates over other forces such as van der Waals interactions, solvation energies can be approximated by a reaction field due to polarization of the dielectric continuum as solvent. Other contributions such as dispersion interactions, which must be explicitly considered for nonpolar solvent systems, have usually been treated with empirical quantity such as macroscopic surface tension of solvent. [Pg.418]

Low surface energy substrates, such as polyethylene or polypropylene, are generally difficult to bond with adhesives. However, cyanoacrylate-based adhesives can be effectively utilized to bond polyolefins with the use of the proper primer/activa-tor on the surface. Primer materials include tertiary aliphatic and aromatic amines, trialkyl ammonium carboxylate salts, tetraalkyl ammonium salts, phosphines, and organometallic compounds, which are initiators for alkyl cyanoacrylate polymerization [33-36]. The primer is applied as a dilute solution to the polyolefin surface, solvent is allowed to evaporate, and the specimens are assembled with a small amount of the adhesive. With the use of primers, adhesive strength can be so strong that substrate failure occurs during the course of the shear tests, as shown in Fig. 11. [Pg.862]

In the previous chapter we considered a rather simple solvent model, treating each solvent molecule as a Langevin-type dipole. Although this model represents the key solvent effects, it is important to examine more realistic models that include explicitly all the solvent atoms. In principle, we should adopt a model where both the solvent and the solute atoms are treated quantum mechanically. Such a model, however, is entirely impractical for studying large molecules in solution. Furthermore, we are interested here in the effect of the solvent on the solute potential surface and not in quantum mechanical effects of the pure solvent. Fortunately, the contributions to the Born-Oppenheimer potential surface that describe the solvent-solvent and solute-solvent interactions can be approximated by some type of analytical potential functions (rather than by the actual solution of the Schrodinger equation for the entire solute-solvent system). For example, the simplest way to describe the potential surface of a collection of water molecules is to represent it as a sum of two-body interactions (the interac-... [Pg.74]

The molecular modelling approach, taking into account the pyruvate—cinchona alkaloid interaction and the steric constraints imposed by the adsorption on the platinum surface, leads to a reasonable explanation for the enantio-differentiation of this system. Although the prediction of the complex formed between the methyl pyruvate and the cinchona modifiers have been made for an ideal case (solvent effects and a quantum description of the interaction with the platinum surface atoms were not considered), this approach proved to be very helpful in the search of new modifiers. The search strategy, which included a systematic reduction of the cinchona alkaloid structure to the essential functional parts and validation of the steric constraints imposed to the interaction complex between modifier and methyl pyruvate by means of molecular modelling, indicated that simple chiral aminoalcohols should be promising substitutes for cinchona alkaloid modifiers. Using the Sharpless symmetric dihydroxylation as a key step, a series of enantiomerically pure 2-hydroxy-2-aryl-ethylamines... [Pg.57]

The segment chemical potential ps(o)is also called the o-potential of a solvent It is a specific function expressing the affinity of a solvent S for solute surface of polarity a. Typical o-profiles and o-potentials are shown in Fig. 11.4. From the a-potentials it can clearly be seen that hexane Ukes nonpolar surfaces and increasingly dislikes polar surfaces, that water does notUke nonpolar surfaces (hydrophobic effect), but that it likes both H-bond donor and acceptor surfaces, that methanol likes donor surfaces more than does water, but acceptors less, and many other features. [Pg.295]

For pesticide residue immunoassays, matrices may include surface or groundwater, soil, sediment and plant or animal tissue or fluids. Aqueous samples may not require preparation prior to analysis, other than concentration. For other matrices, extractions or other cleanup steps are needed and these steps require the integration of the extracting solvent with the immunoassay. When solvent extraction is required, solvent effects on the assay are determined during assay optimization. Another option is to extract in the desired solvent, then conduct a solvent exchange into a more miscible solvent. Immunoassays perform best with water-miscible solvents when solvent concentrations are below 20%. Our experience has been that nearly every matrix requires a complete validation. Various soil types and even urine samples from different animals within a species may cause enough variation that validation in only a few samples is not sufficient. [Pg.647]

In order to find the relationship between the stationary concentration of current carriers in semiconductor film and concentration of dissolved oxygen in polar liquid, it is essential to examine the expression for rate of chemisorbtion of dissolved oxygen molecules on ZnO film and its chemical desorbtion from the surface under effect of solvent... [Pg.210]

Iordanov TD, Davis JL, Masunov AE, Levenson A, Przhonska OV, Kachkovski AD (2009) Symmetry breaking in cationic polymethine dyes, part 1 ground state potential energy surfaces and solvent effects on electronic spectra of streptocyanines. Int J Quantum Chem 109 3592-3601... [Pg.146]

Zhang Y., Hanayama K., and Tsubaki N. 2006. The surface modification effects of silica support by organic solvents for Fischer-Tropsch synthesis catalysts. Catal. Commun. 7 251-54. [Pg.15]


See other pages where Surface solvent effects is mentioned: [Pg.830]    [Pg.596]    [Pg.614]    [Pg.628]    [Pg.654]    [Pg.163]    [Pg.191]    [Pg.369]    [Pg.7]    [Pg.361]    [Pg.195]    [Pg.231]    [Pg.234]    [Pg.193]    [Pg.32]    [Pg.627]    [Pg.6]    [Pg.215]    [Pg.383]    [Pg.328]    [Pg.424]    [Pg.127]    [Pg.129]    [Pg.134]    [Pg.196]    [Pg.707]    [Pg.36]    [Pg.322]    [Pg.163]    [Pg.36]    [Pg.17]    [Pg.447]    [Pg.936]   
See also in sourсe #XX -- [ Pg.238 ]




SEARCH



Potential energy surface solvent dynamic effect

Potential energy surfaces medium/solvent effects

© 2024 chempedia.info