Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface molecular beam

Thirunavukkarasu, K., Thirumoorthy, K., Libuda, J. et al. (2005) Isothermal kinetic study of nitric oxide adsorption and decomposition on Pd(lll) surfaces Molecular beam experiments , J. Phys. Chem. B, 109, 13283. [Pg.93]

Molecular beams are limited to reactions that are carried out in vacuum, where well-defined beams of reactant molecules can be prepared. This limits their application to gas-phase reactions and to reactions of gaseous molecules with solid surfaces. Molecular beam methods cannot be used to study kinetics in liquid solvents. The detailed information they provide for gas-gas and gas-surface reactions allows precise testing of models and theories for the dynamics of these classes of reactions. [Pg.775]

Tertiary carbocations may be conveniently prepared in such media from alkyl halides, alcohols, and alkenes. Secondary cations can be observed at low temperatures, but they rearrange readily to more stable tertiary ions. For such cases, special techniques of mixing the reactants, e.g. cocondensation on a cold surface ( molecular beam technique ), have been developed43. Attempts to prepare primary ions in the same manner have not been successful. Methyl and ethyl fluorides exchange halogen but do not generate observable concentrations of cations. All other simple... [Pg.137]

Though these contributions to the surface bond will not be considered in this review, one should note that these terms may become important when interactions are weak. They may be of relevance for so-called precursor states that are shortlived and are observed in surface molecular beam experiments [7] or postulated in thermal desorption experiments [8]. [Pg.324]

MBRS Molecular beam spectroscopy [158] A modulated molecular beam hits the surface and the time lag for reaction products is measured Kinetics of surface reactions chemisorption... [Pg.315]

MSS Molecule surface scattering [159-161] Translational and rotational energy distribution of a scattered molecular beam Quantum mechanics of scattering processes... [Pg.315]

This section discusses how spectroscopy, molecular beam scattering, pressure virial coeflScients, measurements on transport phenomena and even condensed phase data can help detemiine a potential energy surface. [Pg.200]

For example, energy transfer in molecule-surface collisions is best studied in nom-eactive systems, such as the scattering and trapping of rare-gas atoms or simple molecules at metal surfaces. We follow a similar approach below, discussing the dynamics of the different elementary processes separately. The surface must also be simplified compared to technologically relevant systems. To develop a detailed understanding, we must know exactly what the surface looks like and of what it is composed. This requires the use of surface science tools (section B 1.19-26) to prepare very well-characterized, atomically clean and ordered substrates on which reactions can be studied under ultrahigh vacuum conditions. The most accurate and specific experiments also employ molecular beam teclmiques, discussed in section B2.3. [Pg.899]

The direct dissociation of diatomic molecules is the most well studied process in gas-surface dynamics, the one for which the combination of surface science and molecular beam teclmiques allied to the computation of total energies and detailed and painstaking solution of the molecular dynamics has been most successful. The result is a substantial body of knowledge concerning the importance of the various degrees of freedom (e.g. molecular rotation) to the reaction dynamics, the details of which are contained in a number of review articles [2, 36, 37, 38, 39, 40 and 41]. [Pg.906]

Lykke K R and Kay B D 1990 State-to-state inelastic and reactive molecular beam scattering from surfaces Laser Photoionization and Desorption Surface Analysis Techniquesvo 1208, ed N S Nogar (Bellingham, WA SPIE) p 1218... [Pg.919]

Other methods of sample introduction that are commonly coupled to TOP mass spectrometers are MALDI, SIMS/PAB and molecular beams (see section (Bl.7.2)). In many ways, the ablation of sample from a surface simplifies the TOP mass spectrometer since all ions originate in a narrow space above the sample surface. [Pg.1354]

Engel T and Rieder K H 1982 Structural studies of surfaces with atomic and molecular beam diffraction Structural Studies of Surfaces With Atomic and Molecular Beam Scattering (Springer Tracts in Modern Physics vol 91) (Berlin Springer) pp 55-180... [Pg.1827]

In practical applications, gas-surface etching reactions are carried out in plasma reactors over the approximate pressure range 10 -1 Torr, and deposition reactions are carried out by molecular beam epitaxy (MBE) in ultrahigh vacuum (UHV below 10 Torr) or by chemical vapour deposition (CVD) in the approximate range 10 -10 Torr. These applied processes can be quite complex, and key individual reaction rate constants are needed as input for modelling and simulation studies—and ultimately for optimization—of the overall processes. [Pg.2926]

It is difficult to observe tliese surface processes directly in CVD and MOCVD apparatus because tliey operate at pressures incompatible witli most teclmiques for surface analysis. Consequently, most fundamental studies have selected one or more of tliese steps for examination by molecular beam scattering, or in simplified model reactors from which samples can be transferred into UHV surface spectrometers witliout air exposure. Reference [4] describes many such studies. Additional tliemes and examples, illustrating botli progress achieved and remaining questions, are presented in section C2.18.4. [Pg.2929]

Yu M L and DeLouise L A 1994 Surface chemistry on semiconductors studied by molecular beam reactive scattering Surf. Sc/. Rep. 19 285-380... [Pg.2939]

Chemical reaction dynamics is an attempt to understand chemical reactions at tire level of individual quantum states. Much work has been done on isolated molecules in molecular beams, but it is unlikely tliat tliis infonnation can be used to understand condensed phase chemistry at tire same level [8]. In a batli, tire reacting solute s potential energy surface is altered by botli dynamic and static effects. The static effect is characterized by a potential of mean force. The dynamical effects are characterized by tire force-correlation fimction or tire frequency-dependent friction [8]. [Pg.3043]

The epitaxy reactor is a specialized variant of the tubular reactor in which gas-phase precursors are produced and transported to a heated surface where thin crystalline films and gaseous by-products are produced by further reaction on the surface. Similar to this chemical vapor deposition (CVE)) are physical vapor depositions (PVE)) and molecular beam generated deposits. Reactor details are critical to assuring uniform, impurity-free deposits and numerous designs have evolved (Fig. 22) (89). [Pg.523]

Electrical Properties. Generally, deposited thin films have an electrical resistivity that is higher than that of the bulk material. This is often the result of the lower density and high surface-to-volume ratio in the film. In semiconductor films, the electron mobiHty and lifetime can be affected by the point defect concentration, which also affects electromigration. These effects are eliminated by depositing the film at low rates, high temperatures, and under very controUed conditions, such as are found in molecular beam epitaxy and vapor-phase epitaxy. [Pg.529]

Recent applications of e-beam and HF-plasma SNMS have been published in the following areas aerosol particles [3.77], X-ray mirrors [3.78, 3.79], ceramics and hard coatings [3.80-3.84], glasses [3.85], interface reactions [3.86], ion implantations [3.87], molecular beam epitaxy (MBE) layers [3.88], multilayer systems [3.89], ohmic contacts [3.90], organic additives [3.91], perovskite-type and superconducting layers [3.92], steel [3.93, 3.94], surface deposition [3.95], sub-surface diffusion [3.96], sensors [3.97-3.99], soil [3.100], and thermal barrier coatings [3.101]. [Pg.131]


See other pages where Surface molecular beam is mentioned: [Pg.2]    [Pg.58]    [Pg.45]    [Pg.2]    [Pg.58]    [Pg.45]    [Pg.237]    [Pg.341]    [Pg.638]    [Pg.301]    [Pg.304]    [Pg.880]    [Pg.908]    [Pg.914]    [Pg.928]    [Pg.928]    [Pg.1264]    [Pg.1786]    [Pg.1823]    [Pg.1824]    [Pg.2066]    [Pg.2396]    [Pg.2448]    [Pg.2926]    [Pg.2930]    [Pg.2937]    [Pg.221]    [Pg.435]    [Pg.368]    [Pg.529]    [Pg.536]    [Pg.265]    [Pg.386]    [Pg.457]    [Pg.147]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Molecular beam

Molecular beams surface ionization detector

Molecular surface

Molecular-beam surface scattering

Organic Molecular Beam Deposition of Pentacene on Clean Metal Surfaces

Surface Topography, Molecular Beams, and Transitory Species

Surfaces molecular beam epitaxy

© 2024 chempedia.info