Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitric oxide adsorption

NiTSPc/SWCNT (adsorbed) GCE Adsorption Nitric oxide [107]... [Pg.252]

From the results of other authors should be mentioned the observation of a similar effect, e.g. in the oxidation of olefins on nickel oxide (118), where the retardation of the reaction of 1-butene by cis-2-butene was greater than the effect of 1-butene on the reaction of m-2-butene the ratio of the adsorption coefficients Kcia h/Kwas 1.45. In a study on hydrogenation over C03O4 it was reported (109) that the reactivities of ethylene and propylene were nearly the same (1.17 in favor of propylene), when measured separately, whereas the ratio of adsorption coefficients was 8.4 in favor of ethylene. This led in the competitive arrangement to preferential hydrogenation of ethylene. A similar phenomenon occurs in the catalytic reduction of nitric oxide and sulfur dioxide by carbon monoxide (120a). [Pg.43]

S.W. Jorgensen, N.D.S. Canning, and R.J. Madix, A HREELS, TPD study of nitric oxide adsorption, desorption and reaction on clean and sulfur covered palladium (100), Surf. Sci. 179, 322-350 (1987). [Pg.88]

Y. Matsumoto, T. Onishi, and K. Tamam, Effects of Sulphur on a Palladium Surface on the Adsorption of Carbon Monoxide and the Adsorption and decomposition of nitric oxide, J.C.S. Faraday I 76, 1116-1121 (1980). [Pg.88]

The major contributions of the Co sites in CoSx-MoSx/NaY to the HYD and HDS reactions were corroborated by a FTIR study of NO adsorption. Figure 7 shows the IR spectra of NO adsorbed on CoSx/NaY (2.1Co/SC) and CoSx-MoSx/NaY (2.1Co 2.1Mo/SC). Nitric oxide... [Pg.508]

From the inspection of the data in Table 2.4, it is clear that NO changes its original molecular character after adsorption. In general, coordination of nitric oxide leads to a pronounced redistribution of the electron and spin densities, accompanied by modification of the N-0 bond order and its polarization. Thus, in the case of the (MNO 7 10 and ZnNO 11 species, slender shortening of the N-0 bond is observed, whereas for the MNO 6 and CuNO 11 complexes it is distinctly elongated. Interestingly, polarization of the bound nitric oxide assumes its extreme values in the complexes of the same formal electron count ( NiNO 10 and CuNO 10) exhibiting however different valence. [Pg.40]

Taking into account the electron density relocation (Table 2.4) two routes of NO adsorption can be distinguished. Thus, the nitric oxide coordinates to the monovalent Cr, Ni, and Cu ions in an oxidative way (A<2M > 0), whereas for the rest of the TMIs in a reductive way (AgM < 0). Although this classification is based on the rather simplified criteria, it is well substantiated by experimental observations. Examples of reductive adsorption are provided by interaction of NO with NinSi02 and NinZSM-5, leading at T > 200 K to a Ni -NOs+ adduct identified by the characteristic EPR signal [71]. At elevated temperatures, similar reduction takes place for ConZSM-5 [63], whereas in the case of Cu ZSM-5 part of the monovalent copper is oxidized by NO to Cu2+, as it can readily be inferred from IR and EPR spectra [72,73], This point is discussed in more detail elsewhere [4,57],... [Pg.51]

Sojka, Z., Che, M. and Giamello, E. (1997) EPR investigation of the electronic structure of mononuclear copper(I) nitric oxide adduct formed upon low-pressure adsorption of NO onto Cu/ZSM-5 zeolite, J. Phys. Chem. B, 101, 4831. [Pg.63]

Thirunavukkarasu, K., Thirumoorthy, K., Libuda, J. et al. (2005) Isothermal kinetic study of nitric oxide adsorption and decomposition on Pd(lll) surfaces Molecular beam experiments , J. Phys. Chem. B, 109, 13283. [Pg.93]

This model was fitted to the data of all three temperature levels, 375, 400, and 425°C, simultaneously using nonlinear least squares. The parameters were required to be exponentially dependent upon temperature. Part of the results of this analysis (K6) are reported in Fig. 6. Note the positive temperature coefficient of this nitric oxide adsorption constant, indicating an endothermic adsorption. Such behavior appears physically unrealistic if NO is not dissociated and if the confidence interval on this slope is relatively small. Ayen and Peters rejected this model also. [Pg.110]

Fig. 6. Temperature dependence of adsorption constant for nitric oxide reduction, Eq. (18). Fig. 6. Temperature dependence of adsorption constant for nitric oxide reduction, Eq. (18).
The advantages of electron spectroscopy for the study of adsorbed diatomic molecules are illustrated by reference to the adsorption of carbon monoxide, nitrogen, nitric oxide, and oxygen on different metal surfaces. [Pg.65]

Clearly the molecular events with iron were complex even at 80 K and low NO pressure, and in order to unravel details we chose to study NO adsorption on copper (42), a metal known to be considerably less reactive in chemisorption than iron. It was anticipated, by analogy with carbon monoxide, that nitric oxide would be molecularly adsorbed on copper at 80 K. This, however, was shown to be incorrect (43), and by contrast it was established that the molecule not only dissociated at 80 K, but NjO was generated catalytically within the adlayer. On warming the adlayer formed at 80 K to 295 K, the surface consisted entirely of chemisorbed oxygen with no evidence for nitrogen adatoms. It was the absence of nitrogen adatoms [with their characteristic N(ls) value] at both 80 and 295 K that misled us (43) initially to suggest that adsorption was entirely molecular at 80 K. [Pg.70]

Infrared spectroscopy can be used to obtain a great deal of information about zeolitic materials. As mentioned earlier, analysis of the resulting absorbance bands can be used to get information about the structure of the zeolite and other functional groups present due to the synthesis and subsequent treatments. In addition, infrared spectroscopy can be combined with adsorption of weak acid and base probe molecules to obtain information about the acidity and basicity of the material. Other probe molecules such as carbon monoxide and nitric oxide can be used to get information about the oxidation state, dispersion and location of metals on metal-loaded zeolites. [Pg.113]

Non-noble metals such as Ni, Co, Mo, W, Fe, Ag and Cu have been added to zeolites for use in catalysis. In addition to CO, nitric oxide (NO) has been shown to be a good adsorbate for probing the electronic environment of these metals. When NO chemisorbs on these metals, it can form mononitrosyl (M-NO) and dinitrosyl species (ON-M-NO). The monontrosyl species has a single absorption band and the dinitrosyl species has two bands due to asymmetric and symmetric vibrational modes of the (ON-M-NO) moiety. Again, there have been many studies reported in the literature on the use of NO and/or CO adsorption on non-noble metals supported on zeolites and they are too numerous to list here. Several examples have been selected and summarized to provide the reader with the type of information that can be provided by this method. [Pg.139]

An Electron Energy Loss Spectroscopic Investigation of the Adsorption of Nitric Oxide, Carbon Monoxide, and Hydrogen on the Basal Plane of Ruthenium... [Pg.191]

The adsorption of nitric oxide is of further interest from the point of view of metal-nitrosyl interactions in inorganic chemistry. The bonding of nitrosyl ligands to transition metal centers in metal compounds has indicated that the NO ligand is amphoteric, i.e., it can be formally considered as N0+ or NO-(linear or bent) when bonding to a single metal center (16,17). [Pg.191]

In this chapter, recent results are discussed In which the adsorption of nitric oxide and its Interaction with co-adsorbed carbon monoxide, hydrogen, and Its own dissociation products on the hexagonally close-packed (001) surface of Ru have been characterized using EELS (13,14, 15). The data are interpreted In terms of a site-dependent model for adsorption of molecular NO at 150 K. Competition between co-adsorbed species can be observed directly, and this supports and clarifies the models of adsorption site geometries proposed for the individual adsorbates. Dissociation of one of the molecular states of NO occurs preferentially at temperatures above 150 K, with a coverage-dependent activation barrier. The data are discussed in terms of their relevance to heterogeneous catalytic reduction of NO, and in terms of their relationship to the metal-nitrosyl chemistry of metallic complexes. [Pg.192]


See other pages where Nitric oxide adsorption is mentioned: [Pg.86]    [Pg.133]    [Pg.140]    [Pg.141]    [Pg.48]    [Pg.61]    [Pg.92]    [Pg.92]    [Pg.95]    [Pg.320]    [Pg.320]    [Pg.309]    [Pg.489]    [Pg.140]    [Pg.68]    [Pg.90]    [Pg.393]    [Pg.595]    [Pg.342]    [Pg.202]    [Pg.208]    [Pg.69]    [Pg.396]    [Pg.544]    [Pg.545]    [Pg.37]    [Pg.191]    [Pg.195]    [Pg.195]   
See also in sourсe #XX -- [ Pg.68 , Pg.69 , Pg.70 , Pg.71 , Pg.72 ]




SEARCH



Adsorption/oxidation

Nitric oxide during adsorption

Nitric oxide, adsorption catalysts

Oxides adsorption

© 2024 chempedia.info