Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface metal oxide species structure studies

Recent studies of supported vanadium oxide catalysts have revealed that the vanadium oxide component is present as a two-dimensional metal oxide overlayer on oxide supports (1). These surface vanadium oxide species are more selective than bulk, crystalline V2O5 for the partial oxidation of hydrocarbons (2). The molecular structures of the surface vanadium oxide species, however, have not been resolved (1,3,4). A characterization technique that has provided important information and insight into the molecular structures of surface metal oxide species is Raman spectroscopy (2,5). The molecular structures of metal oxides can be determined from Raman spectroscopy through the use of group theory, polarization data, and comparison of the... [Pg.317]

Titanium oxide monolayer on y-AljOj is a potential support for noble metals [1-4]. Many studies have shown that two-dimensional transition metal oxide overlayers are formed when one metal oxide (Vj05, Nb205, MoOj, etc.) is deposited on an oxide support (AljOj, TiO, etc.) [5-7]. The influence of the molecular structures of surface metal oxide species on the catalytic properties of supported metal oxide catalyst has been examined [8-9]. It has been demonstrated that the formation and location of the surface metal oxide species are controlled by the surface hydroxyl chemistry. Moreover, thin-layer oxide catalysts have been synthesized on alumina by impregnation technique with alkoxide precursor [10]. It has been found for titanium oxide, by using Raman spectroscopy, that a monolayer structure is formed for titanium contents below 17% and that polymeric titanium oxide surface species only posses Ti-O-Ti bonds and not Ti=0 bonds. Titanium is typically ionic in its oxy-compounds, and while it can exist in lower oxidation states, the ionic form TF is generally observed in octahedral coordination [11-12]. However, there is no information available about the Ti coordination and structure of this oxide in a supported monolayer. In this work we have studied the structural evolution of the titanium oxy-hydroxide overlayer obtained from alkoxide precursor, during calcination. [Pg.1059]

The molecular structures of the hydrated surface metal oxides on oxide supports have been determined in recent years with various spectroscopic characterization methods (Raman [34,37,40 3], IR [43], UV-Vis [44,45], solid stateNMR [32,33], and EXAFS/XANES [46-51]). These studies found that the surface metal oxide species possess the same molecular strucmres that are present in aqueous solution at the same net pH values. The effects of vanadia surface coverage and the different oxide supports on the hydrated surface vanadia molecular structures are shown in Table 1.2. As the value of the pH at F ZC of the oxide support decreases, the hydrated surface vanadia species become more polymerized and clustered. Similarly, as the surface vanadia coverage increases, which decreases the net pH at PZC, the hydrated surface vanadia species also become more polymerized and clustered. Consequently, only the value of the net pH at PZC of a given hydrated supported metal oxide system is needed to predict the hydrated molecular structure(s) of the surface metal oxide species. [Pg.5]

The vanadium oxide species is formed on the surface of the oxide support during the preparation of supported vanadium oxide catalysts. This is evident by the consumption of surface hydroxyls (OH) [5] and the structural transformation of the supported metal oxide phase that takes place during hydration-dehydration studies and chemisorption of reactant gas molecules [6]. Recently, a number of studies have shown that the structure of the surface vanadium oxide species depends on the specific conditions that they are observed under. For example, under ambient conditions the surface of the oxide supports possesses a thin layer of moisture which provides an aqueous environment of a certain pH at point of zero charge (pH at pzc) for the surface vanadium oxide species and controls the structure of the vanadium oxide phase [7]. Under reaction conditions (300-500 C), moisture desorbs from the surface of the oxide support and the vanadium oxide species is forced to directly interact with the oxide support which results in a different structure [8]. These structural... [Pg.33]

To investigate the effect of the synthesis method on the structure-reactivity relationship of the supported metal oxide catalysts, a series of V205/Ti02 catalysts were synthesized by equilibrium adsorption, vanadium oxalate, vanadium alkoxides and vanadium oxychloride grafting [14]. The dehydrated Raman spectra of all these catalysts exhibit a sharp band at 1030 cm characteristic of the isolated surface vanadium oxide species described previously. Reactivity studies with... [Pg.36]

A highly detailed picture of a reaction mechanism evolves in-situ studies. It is now known that the adsorption of molecules from the gas phase can seriously influence the reactivity of adsorbed species at oxide surfaces[24]. In-situ observation of adsorbed molecules on metal-oxide surfaces is a crucial issue in molecular-scale understanding of catalysis. The transport of adsorbed species often controls the rate of surface reactions. In practice the inherent compositional and structural inhomogeneity of oxide surfaces makes the problem of identifying the essential issues for their catalytic performance extremely difficult. In order to reduce the level of complexity, a common approach is to study model catalysts such as single crystal oxide surfaces and epitaxial oxide flat surfaces. [Pg.26]

PEMFC)/direct methanol fuel cell (DMFC) cathode limit the available sites for reduction of molecular oxygen. Alternatively, at the anode of a PEMFC or DMFC, the oxidation of water is necessary to produce hydroxyl or oxygen species that participate in oxidation of strongly bound carbon monoxide species. Taylor and co-workers [Taylor et ah, 2007b] have recently reported on a systematic study that examined the potential dependence of water redox reactions over a series of different metal electrode surfaces. For comparison purposes, we will start with a brief discussion of electronic structure studies of water activity with consideration of UHV model systems. [Pg.106]

Macroscopic experiments allow determination of the capacitances, potentials, and binding constants by fitting titration data to a particular model of the surface complexation reaction [105,106,110-121] however, this approach does not allow direct microscopic determination of the inter-layer spacing or the dielectric constant in the inter-layer region. While discrimination between inner-sphere and outer-sphere sorption complexes may be presumed from macroscopic experiments [122,123], direct determination of the structure and nature of surface complexes and the structure of the diffuse layer is not possible by these methods alone [40,124]. Nor is it clear that ideas from the chemistry of isolated species in solution (e.g., outer-vs. inner-sphere complexes) are directly transferable to the surface layer or if additional short- to mid-range structural ordering is important. Instead, in situ (in the presence of bulk water) molecular-scale probes such as X-ray absorption fine structure spectroscopy (XAFS) and X-ray standing wave (XSW) methods are needed to provide this information (see Section 3.4). To date, however, there have been very few molecular-scale experimental studies of the EDL at the metal oxide-aqueous solution interface (see, e.g., [125,126]). [Pg.474]

Metals such as aluminium, steel, and titanium are the primary adherends used for adhesively bonded structure. They are never bonded directly to a polymeric adhesive, however. A protective oxide, either naturally occurring or created on the metal surface either through a chemical etching or anodization technique is provided for corrosion protection. The resultant oxide has a morphology distinct from the bulk and a surface chemistry dependent on the conditions used to form the oxide 39). Studies on various aluminum alloy compositions show that while the oxide composition is invariant with bulk composition, the oxide surface contains chemical species that are characteristic of the base alloy and the anodization bath40 42). [Pg.10]

Our article has concentrated on the relationships between vibrational spectra and the structures of hydrocarbon species adsorbed on metals. Some aspects of reactivities have also been covered, such as the thermal evolution of species on single-crystal surfaces under the UHV conditions necessary for VEELS, the most widely used technique. Wider aspects of reactivity include the important subject of catalytic activity. In catalytic studies, vibrational spectroscopy can also play an important role, but in smaller proportion than in the study of chemisorption. For this reason, it would not be appropriate for us to cover a large fraction of such work in this article. Furthermore, an excellent outline of this broader subject has recently been presented by Zaera (362). Instead, we present a summary account of the kinetic aspects of perhaps the most studied system, namely, the interreactions of ethene and related C2 species, and their hydrogenations, on platinum surfaces. We consider such reactions occurring on both single-crystal faces and metal oxide-supported finely divided catalysts. [Pg.272]

Over the past several years, Gruen and coworkers have examined the SH response from iron electrodes in alkaline solutions [45, 53, 172]. In their work on polycrystalline iron, they concluded that the potential dependent SH response which was observed during surface oxidation could be attributed to two intermediate phases on the electrode surface between the passive film at oxidative potentials and the reduced metal at hydrogen evolution potentials [53]. They have recently extended this work to Fe(110). In this study [172], they examined the SH rotational anisotropy from this crystal under ambient conditions. They found that the experiments reveal the presence of both twofold and threefold symmetric species at the metal/oxide interface. When their data is fit to the theory of Tom et al. [68], they conclude that the measured three-fold symmetric oxide is found to be tilted by 5° from the Fe(110) plane. The two-fold symmetric structure is aligned with the Fe(110) surface. [Pg.197]


See other pages where Surface metal oxide species structure studies is mentioned: [Pg.31]    [Pg.32]    [Pg.138]    [Pg.247]    [Pg.196]    [Pg.816]    [Pg.819]    [Pg.6]    [Pg.23]    [Pg.24]    [Pg.25]    [Pg.26]    [Pg.32]    [Pg.107]    [Pg.20]    [Pg.17]    [Pg.208]    [Pg.534]    [Pg.28]    [Pg.29]    [Pg.16]    [Pg.366]    [Pg.357]    [Pg.12]    [Pg.256]    [Pg.668]    [Pg.127]    [Pg.549]    [Pg.112]    [Pg.198]    [Pg.34]    [Pg.308]    [Pg.39]    [Pg.692]    [Pg.389]    [Pg.858]    [Pg.213]    [Pg.248]    [Pg.67]   
See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Metal oxide surfaces

Metal oxide surfaces, oxidation

Metal species

Metal surfaces studies

Metallated species

Oxidation species

Oxidation studies

Oxidative studies

Oxide studies

Oxides, structure

Species studied

Structure studies metal oxides

Surface metal oxide species

Surface metal oxide species structure

Surface metallic oxide

Surface structure studies

Surface study

Surfaces studied

© 2024 chempedia.info