Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface heavy metal

The operation of waste incinerators is affected by the formation of corrosive gases and aerosols during the combustion process. This leads to severe corrosion of the metal compounds, e.g. heat exchanger tubes and water walls. As especially water walls have surface temperatures around 350°C, salt deposits are formed by condensation of aerosols within the flue gas on the metal surface. Heavy metal compounds like Pb and Zn cause the formation of eutectic salt mixtures with low melting points [1]. If salt deposits are molten, corrosion is accelerated in comparison to solid deposits. Such type of corrosion is known as hot corrosion . [Pg.533]

Soaps of heavy metals have been used but cationic surface-active agents have proved more suitable, notably organic amines of relatively high molecular weight. [Pg.16]

Anodic-stripping voltaimnetry (ASV) is used for the analysis of cations in solution, particularly to detemiine trace heavy metals. It involves pre-concentrating the metals at the electrode surface by reducmg the dissolved metal species in the sample to the zero oxidation state, where they tend to fomi amalgams with Hg. Subsequently, the potential is swept anodically resulting in the dissolution of tire metal species back into solution at their respective fomial potential values. The detemiination step often utilizes a square-wave scan (SWASV), since it increases the rapidity of tlie analysis, avoiding interference from oxygen in solution, and improves the sensitivity. This teclmique has been shown to enable the simultaneous detemiination of four to six trace metals at concentrations down to fractional parts per billion and has found widespread use in seawater analysis. [Pg.1932]

At potentials positive to the bulk metal deposition, a metal monolayer-or in some cases a bilayer-of one metal can be electrodeposited on another metal surface this phenomenon is referred to as underiDotential deposition (upd) in the literature. Many investigations of several different metal adsorbate/substrate systems have been published to date. In general, two different classes of surface stmetures can be classified (a) simple superstmetures with small packing densities and (b) close-packed (bulklike) or even compressed stmetures, which are observed for deposition of the heavy metal ions Tl, Hg and Pb on Ag, Au, Cu or Pt (see, e.g., [63, 64, 65, 66, 62, 68, 69 and 70]). In case (a), the metal adsorbate is very often stabilized by coadsorbed anions typical representatives of this type are Cu/Au (111) (e.g. [44, 45, 21, 22 and 25]) or Cu/Pt(l 11) (e.g. [46, 74, 75, and 26 ]) It has to be mentioned that the two dimensional ordering of the Cu adatoms is significantly affected by the presence of coadsorbed anions, for example, for the upd of Cu on Au(l 11), the onset of underiDotential deposition shifts to more positive potentials from 80"to Br and CE [72]. [Pg.2753]

Chelant Control. Chelants are the prime additives in a solubilizing boiler water treatment program. Chelants have the abihty to complex many cations (hardness and heavy metals under boiler water conditions). They accomplish this by locking metals into a soluble organic ring stmcture. The chelated cations do not deposit in the boiler. When apphed with a dispersant, chelants produce clean waterside surfaces. [Pg.263]

Trisodium phosphate [7601-54-9] trisodium orthophosphate, Na PO, is an important constituent of hard-surface cleaners including those for ceramic, metal, or painted surfaces. It may be used with soaps, surfactants, or other alkaHes. It precipitates many heavy-metal ions but does not sequester to form soluble chelates. It is thus a precipitant builder and additionally an alkaH. [Pg.527]

The alkahes do not sequester heavy-metal ions and have Httie soil-suspending effect. They are effective in maintaining a high pH and saponify the acidic constituents of soil and thus promote cleaning. In the cleaning of ceramics, glass, and metal surfaces, however, the alkahes act as primary detergents even in the absence of surfactants in these systems. [Pg.528]

The ferrous ions that dissolve from the anode combine with the hydroxide ions produced at the cathode to give an iron hydroxide precipitate. The active surface of ferrous hydroxide can absorb a number of organic compounds as well as heavy metals from the wastewater passing through the cell. The iron hydroxide and adsorbed substances are then removed by flocculation and filtration. The separation process was enhanced by the addition of a small quantity of an anionic polymer. [Pg.383]

Toxic heavy metals and ions, eg, Pb, Hg, Bi, Sn, Zn, Cd, Cu, and Fe, may form alloys with catalytic metals (24). Materials such as metallic lead, ziac, and arsenic react irreversibly with precious metals and make the surface unavailable for catalytic reactions. Poisoning by heavy metals ordinarily destroys the activity of a precious-metal catalyst (8). [Pg.508]

Using 2eohte catalysts, the NO reduction takes place inside a molecular sieve ceramic body rather than on the surface of a metallic catalyst (see Molecularsieves). This difference is reported to reduce the effect of particulates, soot, SO2/SO2 conversions, heavy metals, etc, which poison, plug, and mask metal catalysts. ZeoHtes have been in use in Europe since the mid-1980s and there are approximately 100 installations on stream. Process applications range from use of natural gas to coal as fuel. Typically, nitrogen oxide levels are reduced 80 to 90% (37). [Pg.511]

Pretreatment For most membrane applications, particularly for RO and NF, pretreatment of the feed is essential. If pretreatment is inadequate, success will be transient. For most applications, pretreatment is location specific. Well water is easier to treat than surface water and that is particularly true for sea wells. A reducing (anaerobic) environment is preferred. If heavy metals are present in the feed even in small amounts, they may catalyze membrane degradation. If surface sources are treated, chlorination followed by thorough dechlorination is required for high-performance membranes [Riley in Baker et al., op. cit., p. 5-29]. It is normal to adjust pH and add antisealants to prevent deposition of carbonates and siillates on the membrane. Iron can be a major problem, and equipment selection to avoid iron contamination is required. Freshly precipitated iron oxide fouls membranes and reqiiires an expensive cleaning procedure to remove. Humic acid is another foulant, and if it is present, conventional flocculation and filtration are normally used to remove it. The same treatment is appropriate for other colloidal materials. Ultrafiltration or microfiltration are excellent pretreatments, but in general they are... [Pg.2037]

Main tasks on theoretical grounds and development of methodology for chemical analyses of ecological state of surface waterbodies under regulation of heavy metal ions discharges in the bodies. It is necessary to ... [Pg.86]

At X-ray fluorescence analysis (XRF) of samples of the limited weight is perspective to prepare for specimens as polymeric films on a basis of methylcellulose [1]. By the example of definition of heavy metals in film specimens have studied dependence of intensity of X-ray radiation from their chemical compound, surface density (P ) and the size (D) particles of the powder introduced to polymer. Have theoretically established, that the basic source of an error of results XRF is dependence of intensity (F) analytical lines of determined elements from a specimen. Thus the best account of variations P provides a method of the internal standard at change P from 2 up to 6 mg/sm the coefficient of variation describing an error of definition Mo, Zn, Cu, Co, Fe and Mn in a method of the direct external standard, reaches 40 %, and at use of a method of the internal standard (an element of comparison Ga) value does not exceed 2,2 %. Experiment within the limits of a casual error (V changes from 2,9 up to 7,4 %) has confirmed theoretical conclusions. [Pg.104]

Effective metal ion adsorbent has been prepai ed by the immobilization of propylthioethyleamine ligand onto the surface of silica gel (SN-SiO,).The effectiveness of this material to bind metal ions has been attributed to the complexation chemistry between the ligand and the metal. We are investigating properties of propylthioethyleamine grafted on the surface of silica and possibility of application of the obtained surface for preconcentration of heavy metals such as zinc, lead, cadmium, copper, etc. from water solutions. [Pg.274]

The term direct TXRF refers to surface impurity analysis with no surface preparation, as described above, achieving detection Umits of 10 °—10 cm for heavy-metal atoms on the silicon surface. The increasit complexity of integrated circuits fabricated from silicon wafers will demand even greater surfrce purity in the future, with accordingly better detection limits in analytical techniques. Detection limits of less than 10 cm can be achieved, for example, for Fe, using a preconcentration technique known as Vapor Phase Decomposition (VPD). [Pg.352]

The SSMS point-to-plane surface technique has been shown to be particularly useful in the survey analysis of epitaxial films, heavy metal implant contamination, diflRision furnace contamination, and deposited metal layers. [Pg.604]

Another approach used to reduce the harmful effects of heavy metals in petroleum residues is metal passivation. In this process an oil-soluble treating agent containing antimony is used that deposits on the catalyst surface in competition with contaminant metals, thus reducing the catalytic activity of these metals in promoting coke and gas formation. Metal passivation is especially important in fluid catalytic cracking (FCC) processes. Additives that improve FCC processes were found to increase catalyst life and improve the yield and quality of products. ... [Pg.47]

Deactivation of zeolite catalysts occurs due to coke formation and to poisoning by heavy metals. In general, there are two types of catalyst deactivation that occur in a FCC system, reversible and irreversible. Reversible deactivation occurs due to coke deposition. This is reversed by burning coke in the regenerator. Irreversible deactivation results as a combination of four separate but interrelated mechanisms zeolite dealu-mination, zeolite decomposition, matrix surface collapse, and contamination by metals such as vanadium and sodium. [Pg.72]

The rate (or kinetics) and form of a corrosion reaction will be affected by a variety of factors associated with the metal and the metal surface (which can range from a planar outer surface to the surface within pits or fine cracks), and the environment. Thus heterogeneities in a metal (see Section 1.3) may have a marked effect on the kinetics of a reaction without affecting the thermodynamics of the system there is no reason to believe that a perfect single crystal of pure zinc completely free from lattic defects (a hypothetical concept) would not corrode when immersed in hydrochloric acid, but it would probably corrode at a significantly slower rate than polycrystalline pure zinc, although there is no thermodynamic difference between these two forms of zinc. Furthermore, although heavy metal impurities in zinc will affect the rate of reaction they cannot alter the final position of equilibrium. [Pg.76]


See other pages where Surface heavy metal is mentioned: [Pg.882]    [Pg.344]    [Pg.486]    [Pg.911]    [Pg.882]    [Pg.344]    [Pg.486]    [Pg.911]    [Pg.1628]    [Pg.1630]    [Pg.194]    [Pg.237]    [Pg.37]    [Pg.230]    [Pg.153]    [Pg.343]    [Pg.13]    [Pg.72]    [Pg.410]    [Pg.217]    [Pg.208]    [Pg.2219]    [Pg.2230]    [Pg.190]    [Pg.312]    [Pg.440]    [Pg.133]    [Pg.336]    [Pg.350]    [Pg.90]    [Pg.18]    [Pg.145]    [Pg.36]    [Pg.317]    [Pg.573]    [Pg.675]   
See also in sourсe #XX -- [ Pg.149 ]




SEARCH



© 2024 chempedia.info