Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface fluidity

Surface Pressure, Potential, and Fluidity Characteristics for Various Interactions in Mixed Monolayers. It is possible to distinguish various types of interactions which occur in mixed monolayers by measuring the surface pressure, surface potential, and surface fluidity of the monolayers. Deviation from the additivity rule of molecular areas indicates either an interaction between components or the intermolecular cavity effect in mixed monolayers. [Pg.202]

Boyd and Vaslov (6) showed that the curve of log fa vs. mole fraction (where fa is the surface fluidity) for mixed monolayers exhibits additivity for mixed films of miscible components, positive deviation for immiscible components, and negative deviation for components having molecular interactions. Figure 5 shows various interactions which occur... [Pg.203]

SURFACE PRESSURE SURFACE POTENTIAL SURFACE FLUIDITY... [Pg.204]

Hydrocarbon-Hydrocarbon Interaction. Figure 5c shows the general characteristics of mixed monolayers in which hydrocarbon-hydrocarbon interaction occurs—e.g., trimyristin-myristic acid monolayers (16). The average area per molecule shows a deviation, whereas the surface potential per molecule follows the additivity rule. Hydrocarbon-hydrocarbon interaction also increases the cohesive force in the lipid layer and therefore reduces the fluidity of the mixed monolayer. It is evident from Figures 3a and 3c that surface fluidity is the only parameter which distinguishes an intermolecular cavity effect from hydrocarbon-hydrocarbon interaction. [Pg.205]

Particle shape Spherical, smooth surface Fluidity resistance against attrition... [Pg.284]

Recently, EHEC and other hydrocolloids were used for the stabilization of lipid microspheres. The coating reduced the zeta potential of the liposomes to a neutral value and decreased their surface fluidity, as measured by fluorescence... [Pg.244]

Surface Fluidity The inverse of the surface shear viscosity. [Pg.521]

The state of an adsorbate is often described as mobile or localized, usually in connection with adsorption models and analyses of adsorption entropies (see Section XVII-3C). A more direct criterion is, in analogy to that of the fluidity of a bulk phase, the degree of mobility as reflected by the surface diffusion coefficient. This may be estimated from the dielectric relaxation time Resing [115] gives values of the diffusion coefficient for adsorbed water ranging from near bulk liquids values (lO cm /sec) to as low as 10 cm /sec. [Pg.589]

The primary site of action is postulated to be the Hpid matrix of cell membranes. The Hpid properties which are said to be altered vary from theory to theory and include enhancing membrane fluidity volume expansion melting of gel phases increasing membrane thickness, surface tension, and lateral surface pressure and encouraging the formation of polar dislocations (10,11). Most theories postulate that changes in the Hpids influence the activities of cmcial membrane proteins such as ion channels. The Hpid theories suffer from an important drawback at clinically used concentrations, the effects of inhalational anesthetics on Hpid bilayers are very small and essentially undetectable (6,12,13). [Pg.407]

Lea.d nd Le d Alloys. Selenium is reported to lower the surface tension of lead. The addition of 0.1% selenium and tellurium to solder improves its fluidity. [Pg.336]

Langmuir-Blodgett films (LB) and self assembled monolayers (SAM) deposited on metal surfaces have been studied by SERS spectroscopy in several investigations. For example, mono- and bilayers of phospholipids and cholesterol deposited on a rutile prism with a silver coating have been analyzed in contact with water. The study showed that in these models of biological membranes the second layer modified the fluidity of the first monolayer, and revealed the conformation of the polar head close to the silver [4.300]. [Pg.262]

Silicon may be present in high-chromium irons in amounts varying between 0-5 and 2-5%. Its effect is to increase fluidity in the foundry and improve the surface quality of castings. Further effects are to refine the eutectic carbides in the iron, to produce a more uniform structure and to raise the temperature at which the matrix transforms from ferrite to austenite with consequent dimensional changes. Additions above 2-5% have an embrittling effect. [Pg.612]

The fluidity of blood is a result of the inhibition of a complex series of enzymic reactions in the coagulation cascade (see Fig. 10). When triggered either intrinsically (by contact with foreign surfaces ), or extrinsically (by tissue factors from damaged cells), inactive proenzymes (factors XII, XI, IX, and X) are transformed into activated pro-teinases (XHa, XIa, IXa, and Xa, respectively). Each proteinase catalyzes the activation of the following proenzyme in the sequence, up to formation of thrombin (Factor Ha), another proteinase that catalyzes partial... [Pg.117]

Carotenoids are hydrophobic molecules and thus are located in lipophilic sites of cells, such as bilayer membranes. Their hydrophobic character is decreased with an increased number of polar substitutents (mainly hydroxyl groups free or esterified with glycosides), thus affecting the positioning of the carotenoid molecule in biological membranes. For example, the dihydroxycarotenoids such as LUT and zeaxanthin (ZEA) may orient themselves perpendicular to the membrane surface as molecular rivet in order to expose their hydroxyl groups to a more polar environment. In contrast, the carotenes such as (3-C and LYC could position themselves parallel to the membrane surface to remain in a more lipophilic environment in the inner core of the bilayer membranes (Parker, 1989 Britton, 1995). Thus, carotenoid molecules can have substantial effects on the thickness, strength, and fluidity of membranes and thus affect many of their functions. [Pg.368]

The fluidity of lipid bilayers permits dynamic interactions among membrane proteins. For example, the interactions of a neurotransmitter or hormone with its receptor can dissociate a transducer protein, which in turn will diffuse to interact with other effector proteins (Ch. 19). A given effector protein, such as adenylyl cyclase, may respond differently to different receptors because of mediation by different transducers. These dynamic interactions require rapid protein diffusion within the plane of the membrane bilayer. Receptor occupation can initiate extensive redistribution of membrane proteins, as exemplified by the clustering of membrane antigens consequent to binding bivalent antibodies [8]. In contrast to these examples of lateral mobility, the surface distribution of integral membrane proteins can be fixed by interactions with other proteins. Membranes may also be partitioned into local spatial domains consisting of networks... [Pg.25]

Contrary to the accumulated knowledge on the static or quasi-static characteristics of thin lipid films at air/water interface, less attention has been paid to the dynamical or nonequilibrium behavior of the film. Studies on the dynamical characteristics of thin lipid films may be quite important, because the life phenomena are maintained under nonequilibrium conditions. According to the modern biochemistry [11,12], thin lipid membrane in living cells is not a rigid wall but a thermally fluctuating barrier with high fluidity. In the present section, we will show that thin lipid film exhibits the various interesting dynamical tc-A characteristics, such as the "overshoot hump", the "zero surface pressure", and the "flat plateau". [Pg.223]

Fluorescence is also a powerful tool for investigating the structure and dynamics of matter or living systems at a molecular or supramolecular level. Polymers, solutions of surfactants, solid surfaces, biological membranes, proteins, nucleic acids and living cells are well-known examples of systems in which estimates of local parameters such as polarity, fluidity, order, molecular mobility and electrical potential is possible by means of fluorescent molecules playing the role of probes. The latter can be intrinsic or introduced on purpose. The high sensitivity of fluo-rimetric methods in conjunction with the specificity of the response of probes to their microenvironment contribute towards the success of this approach. Another factor is the ability of probes to provide information on dynamics of fast phenomena and/or the structural parameters of the system under study. [Pg.393]


See other pages where Surface fluidity is mentioned: [Pg.205]    [Pg.169]    [Pg.205]    [Pg.169]    [Pg.227]    [Pg.264]    [Pg.265]    [Pg.6]    [Pg.469]    [Pg.413]    [Pg.73]    [Pg.1830]    [Pg.154]    [Pg.165]    [Pg.599]    [Pg.887]    [Pg.26]    [Pg.79]    [Pg.164]    [Pg.383]    [Pg.113]    [Pg.219]    [Pg.812]    [Pg.436]    [Pg.131]    [Pg.133]    [Pg.365]    [Pg.90]    [Pg.195]    [Pg.201]    [Pg.203]    [Pg.249]    [Pg.195]    [Pg.277]   
See also in sourсe #XX -- [ Pg.528 ]




SEARCH



Fluidity

© 2024 chempedia.info