Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface concentrations particle

If the spreading is into a limited surface area, as in a laboratory experiment, the film front rather quickly reaches the boundaries of the trough. The film pressure at this stage is low, and the now essentially uniform film more slowly increases in v to the final equilibrium value. The rate of this second-stage process is mainly determined by the rate of release of material from the source, for example a crystal, and the surface concentration F [46]. Franses and co-workers [47] found that the rate of dissolution of hexadecanol particles sprinkled at the water surface controlled the increase in surface pressure here the slight solubility of hexadecanol in the bulk plays a role. [Pg.111]

Requirements on parameters that may influence the building and its performance and target levels to be determined for occupational zones and non-occupational zones are the following temperature, humidity, air velocity, contaminant concentration (particles, gases), odors, biocontamination (in air and on surfaces), fire/explosion risk, noise, vibrations, radiation (IR, UV, radioactive, etc.), sunshine, loading on floors, and pressure differences (in,side-outside and between rooms). [Pg.405]

A very similar effect of the surface concentration on the conformation of adsorbed macromolecules was observed by Cohen Stuart et al. [25] who studied the diffusion of the polystyrene latex particles in aqueous solutions of PEO by photon-correlation spectroscopy. The thickness of the hydrodynamic layer 8 (nm) calculated from the loss of the particle diffusivity was low at low coverage but showed a steep increase as the adsorbed amount exceeded a certain threshold. Concretely, 8 increased from 40 to 170 nm when the surface concentration of PEO rose from 1.0 to 1.5 mg/m2. This character of the dependence is consistent with the calculations made by the authors [25] according to the theory developed by Scheutjens and Fleer [10,12] which predicts a similar variation of the hydrodynamic layer thickness of adsorbed polymer with coverage. The dominant contribution to this thickness comes from long tails which extend far into the solution. [Pg.141]

Reactions of the general type A + B -> AB may proceed by a nucleation and diffusion-controlled growth process. Welch [111] discusses one possible mechanism whereby A is accepted as solid solution into crystalline B and reacts to precipitate AB product preferentially in the vicinity of the interface with A, since the concentration is expected to be greatest here. There may be an initial induction period during solid solution formation prior to the onset of product phase precipitation. Nuclei of AB are subsequently produced at surfaces of particles of B and growth may occur with or without maintained nucleation. [Pg.71]

In another study of the physical behavior of soap-LSDA blends, Weil and Linfield [35] showed that the mechanism of action of such mixtures is based on a close association between the two components. In deionized water this association is mixed micellar. Surface tension curves confirm the presence of mixed micelles in deionized water and show a combination of optimum surface active properties, such as low CMC, high surface concentration, and low surface concentration above the CMC. Solubilization of high Krafft point soap by an LSDA and of a difficulty soluble LSDA by soap are related results of this association. Analysis of dispersions of soap-LSDA mixtures in hard water shows that the dispersed particles are mixtures of soap and LSDA in the same proportion as they were originally added. These findings are inconsistent with the view that soap reacts separately with hard water ions and that the resulting lime soap is suspended by surface adsorption of LSDA. The suspended particles are responsible for surface-active properties and detergency and do not permit deposits on washed fabric unlike those found after washing with soap alone. [Pg.642]

A large fraction of the hazardous waste generated in industry is in the form of dilute aqueous solutions. The special challenges of separation in highly dilute solutions may be met by the development of new, possibly liquid-filled, membranes by processes involving selective concentration of toxic chemicals on the surfaces of particles or by the use of reversed micelles. [Pg.136]

Diffusion through a product layer can be treated like a film resistance. The surface concentration is measured inside the ash layer at the unbumed surface of the particle. If the ash thickness is constant and as 0, then the rate has the form of Equation (11.48). The ash thickness will probably increase with time, and this will cause the rate constant applicable to a single particle to gradually decline with time. [Pg.420]

In addition to bulk liquid turbulence effects, suspended particles maybe involved in collisions with one another or with solid surfaces within the vessel. This phenomenon has been extensively studied in micro-carrier cultures [60] and appears to be significant at high concentrations [61]. Rosenberg [69] and Meijer [72] applied the approach of Cherry and Papoutsakis [60] to the study of collision phenomena involving spherical plant cell aggregates of 190 and 100 pm, respectively. In both cases it was concluded that for typical biomass concentrations, particle-particle interactions were of less significance than particle-impeller collisions. [Pg.146]

Often, mnltistep reactions are enconntered where a reactant j first becomes adsorbed on the electrode, then is converted electrochemically (or chemically) to a desorbing prodnct. We shall consider the case where the electrochemical step involving adsorbed particles is rate determining. With a homogeneons electrode surface and without interaction forces between the adsorbed particles [i.e., in conditions when the Langmuir isotherm (10.14) can be apphed], the assumption can be made that the rate of this step is proportional not to the bulk concentration Cy j but to the surface concentration Aj or to the degree of surface coverage 0 hence. [Pg.248]

Th is extremely insoluble and adheres to the surface of particles in the ocean soon after it forms from the decay of Because these particles continuously settle from the water column, °Th is rapidly removed from the oceans to the seafloor. The combined process of surface adsorption, followed by particle settling, is termed scavenging. Measurement of the very low °Th concentrations in seawater that result from this... [Pg.499]

Solution of equations (1.26) and (1.27) for above two limiting cases differing in the value of the surface concentration of adsorption particles brings about different dependencies of the value of the surface band bending as a function of parameters of the absorbate-adsorbent system. Thus, in case of adsorption of acceptors we obtain from (1.26) that... [Pg.31]

On the contrary such active particles as hydrogen atoms and metals (electron donors), touching the surface of oxides dopes them increasing the surface concentration of electron donors which results in increase in adsorbent conductivity. [Pg.149]

Above reasoning can be confirmed by a number of experimental results which showed that although with some peculiarities irrelevant to the properties of semiconductor sensors the correlation between the amount of the atoms in the flux incident on the target, or their surface concentration, and the variation (increase, if we are dealing with semiconductor of n-type) of the target conductivity takes place [28]. Based on the relations cited in Chapter 1, one can estimate concentrations (i. e., flow intensities) of these particles in vacuum or in gaseous medium if these values are quite small, using the values of conductivity variation of the semiconductor film. [Pg.186]

Routh and Russel [10] proposed a dimensionless Peclet number to gauge the balance between the two dominant processes controlling the uniformity of drying of a colloidal dispersion layer evaporation of solvent from the air interface, which serves to concentrate particles at the surface, and particle diffusion which serves to equilibrate the concentration across the depth of the layer. The Peclet number, Pe is defined for a film of initial thickness H with an evaporation rate E (units of velocity) as HE/D0, where D0 = kBT/6jT ir- the Stokes-Einstein diffusion coefficient for the particles in the colloid. Here, r is the particle radius, p is the viscosity of the continuous phase, T is the absolute temperature and kB is the Boltzmann constant. When Pe 1, evaporation dominates and particles concentrate near the surface and a skin forms, Figure 2.3.5, lower left. Conversely, when Pe l, diffusion dominates and a more uniform distribution of particles is expected, Figure 2.3.5, upper left. [Pg.97]

When a solid acts as a catalyst for a reaction, reactant molecules are converted into product molecules at the fluid-solid interface. To use the catalyst efficiently, we must ensure that fresh reactant molecules are supplied and product molecules removed continuously. Otherwise, chemical equilibrium would be established in the fluid adjacent to the surface, and the desired reaction would proceed no further. Ordinarily, supply and removal of the species in question depend on two physical rate processes in series. These processes involve mass transfer between the bulk fluid and the external surface of the catalyst and transport from the external surface to the internal surfaces of the solid. The concept of effectiveness factors developed in Section 12.3 permits one to average the reaction rate over the pore structure to obtain an expression for the rate in terms of the reactant concentrations and temperatures prevailing at the exterior surface of the catalyst. In some instances, the external surface concentrations do not differ appreciably from those prevailing in the bulk fluid. In other cases, a significant concentration difference arises as a consequence of physical limitations on the rate at which reactant molecules can be transported from the bulk fluid to the exterior surface of the catalyst particle. Here, we discuss... [Pg.474]

In the presence of intraparticle mass transfer limitations, the rate per particle is expressed in terms of the species concentrations prevailing at the exterior of the catalyst. However, when external mass transfer limitations are also present, these concentrations will differ from those prevailing in the bulk. Since bulk concentrations are what one measures in the laboratory, exterior surface concentrations must be eliminated to express the observed conversion rate in terms of measurable concentrations. In the paragraphs that follow, the manner in which one eliminates surface concentrations is indicated in some detail for a specific case. [Pg.478]


See other pages where Surface concentrations particle is mentioned: [Pg.233]    [Pg.200]    [Pg.233]    [Pg.200]    [Pg.309]    [Pg.49]    [Pg.389]    [Pg.489]    [Pg.490]    [Pg.13]    [Pg.1749]    [Pg.464]    [Pg.227]    [Pg.384]    [Pg.252]    [Pg.221]    [Pg.246]    [Pg.140]    [Pg.188]    [Pg.235]    [Pg.315]    [Pg.147]    [Pg.235]    [Pg.584]    [Pg.644]    [Pg.90]    [Pg.48]    [Pg.240]    [Pg.241]    [Pg.508]    [Pg.551]    [Pg.165]    [Pg.173]    [Pg.173]    [Pg.284]   
See also in sourсe #XX -- [ Pg.352 ]




SEARCH



Particle concentration

Particle surfaces

Surface concentrations

Surfaces concentrator

© 2024 chempedia.info