Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface and pore characterization

British Standards for Particle, Surface, and Pore Characterization... [Pg.41]

Gas adsorption (physisorption) is one of the most frequently used characterization methods for micro- and mesoporous materials. It provides information on the pore volume, the specific surface area, the pore size distribution, and heat of adsorption of a given material. The basic principle of the methods is simple interaction of molecules in a gas phase (adsorptive) with the surface of a sohd phase (adsorbent). Owing to van der Waals (London) forces, a film of adsorbed molecules (adsorbate) forms on the surface of the solid upon incremental increase of the partial pressure of the gas. The amount of gas molecules that are adsorbed by the solid is detected. This allows the analysis of surface and pore properties. Knowing the space occupied by one adsorbed molecule, Ag, and the number of gas molecules in the adsorbed layer next to the surface of the solid, (monolayer capacity of a given mass of adsorbent) allows for the calculation of the specific surface area, As, of the solid by simply multiplying the number of the adsorbed molecules per weight unit of solid with the space required by one gas molecule ... [Pg.128]

Good consistency of the parameters derived from various experimental data is observed for rigid materials with regular pore geometry and sharp boundary between solid surface and pore space. The contrast between empty pores and silica is large both for X-rays and positrons. However, in the case of chemically modified silica this interface boundary is characterized by the presence of transition layer for which the structure and density is not satisfactory established. Thus, pore dimensions determined by using different techniques exhibit some discrepancy. [Pg.656]

Important physical properties of catalysts include the particle size and shape, surface area, pore volume, pore size distribution, and strength to resist cmshing and abrasion. Measurements of catalyst physical properties (43) are routine and often automated. Pores with diameters <2.0 nm are called micropores those with diameters between 2.0 and 5.0 nm are called mesopores and those with diameters >5.0 nm are called macropores. Pore volumes and pore size distributions are measured by mercury penetration and by N2 adsorption. Mercury is forced into the pores under pressure entry into a pore is opposed by surface tension. For example, a pressure of about 71 MPa (700 atm) is required to fill a pore with a diameter of 10 nm. The amount of uptake as a function of pressure determines the pore size distribution of the larger pores (44). In complementary experiments, the sizes of the smallest pores (those 1 to 20 nm in diameter) are deterrnined by measurements characterizing desorption of N2 from the catalyst. The basis for the measurement is the capillary condensation that occurs in small pores at pressures less than the vapor pressure of the adsorbed nitrogen. The smaller the diameter of the pore, the greater the lowering of the vapor pressure of the Hquid in it. [Pg.171]

Characterization. Ceramic bodies are characterized by density, mass, and physical dimensions. Other common techniques employed in characterizing include x-ray diffraction (XRD) and electron or petrographic microscopy to determine crystal species, stmcture, and size (100). Microscopy (qv) can be used to determine chemical constitution, crystal morphology, and pore size and morphology as well. Mercury porosknetry and gas adsorption are used to characterize pore size, pore size distribution, and surface area (100). A variety of techniques can be employed to characterize bulk chemical composition and the physical characteristics of a powder (100,101). [Pg.314]

Membrane Cliaraeterization MF membranes are rated bvtliix and pore size. Microfiltration membranes are imiqiielv testable bv direct examination, but since the number of pores that rnav be obsen ed directlv bv microscope is so small, microscopic pore size determination is rnainlv useful for membrane research and verification of other pore-size-determining methods. Furthermore, the most critical dimension rnav not be obseiA able from the surface. Few MF membranes have neat, cvlindrical pores. Indirect means of measurement are generallv superior. Accurate characterization of MF membranes is a continuing research topic for which interested parties should consult the current literature. [Pg.2045]

The structure of the catalysts was characterized by X-ray diffraction, IR-spectroscopy and transmission electron microscopy, their thermal stability was followed by thermal analytical method. The specific surface area and pore size distribution of the samples were determined by nitrogen adsorption isotherms. [Pg.268]

Besides the 29Si and 27 A1 NMR studies of zeolites mentioned above, other nuclei such as H, 13C, nO, 23Na, 31P, and 51V have been used to study physical chemistry properties such as solid acidity and defect sites in specific catalysts [123,124], 129Xe NMR has also been applied for the characterization of pore sizes, pore shapes, and cation distributions in zeolites [125,126], Finally, less common but also possible is the study of adsorbates with NMR. For instance, the interactions between solid acid surfaces and probe molecules such as pyridine, ammonia, and P(CH3)3 have been investigated by 13C, 15N, and 31P NMR [124], In situ 13C MAS NMR has also been adopted to follow the chemistry of reactants, intermediates, and products on solid catalysts [127,128],... [Pg.19]

On the other hand, the surface fractal dimension characterizes the pore surface irregularity the larger the value of surface fractal dimension is, the more irregular and the rougher is the pore surface. Since the pore structure is closely related to the electroactive surface area which plays a key role in the increase of capacity in practical viewpoint, many researchers have investigated the microstructure of the pores by using fractal geometry. [Pg.398]

The extent to which a given reactant, such as oxygen, is able to utilize this additional surface area depends on the difficulty in diffusing through the particle to reach the pore surfaces and on the overall balance between diffusion control of the burning rate and kinetic control. To broadly characterize these competing effects, three zones of combustion of porous particles have been identified, as shown in Fig. 9.21. In Zone I the combustion rate is fully controlled by the surface reaction rate (kinetically controlled), because the diffusion... [Pg.539]


See other pages where Surface and pore characterization is mentioned: [Pg.7]    [Pg.7]    [Pg.7]    [Pg.7]    [Pg.259]    [Pg.154]    [Pg.2]    [Pg.179]    [Pg.387]    [Pg.283]    [Pg.508]    [Pg.154]    [Pg.218]    [Pg.233]    [Pg.132]    [Pg.289]    [Pg.360]    [Pg.403]    [Pg.729]    [Pg.2771]    [Pg.487]    [Pg.556]    [Pg.643]    [Pg.164]    [Pg.263]    [Pg.266]    [Pg.129]    [Pg.137]    [Pg.373]    [Pg.126]    [Pg.198]    [Pg.315]    [Pg.8]    [Pg.89]    [Pg.19]    [Pg.92]    [Pg.274]   
See also in sourсe #XX -- [ Pg.33 , Pg.40 , Pg.48 , Pg.58 ]




SEARCH



Characterization and surface

Physisorption Characterizing Surfaces and Pores

Pore surface

Pores characterization

© 2024 chempedia.info