Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical fluid viscosity

As it has appeared in recent years that many hmdamental aspects of elementary chemical reactions in solution can be understood on the basis of the dependence of reaction rate coefficients on solvent density [2, 3, 4 and 5], increasing attention is paid to reaction kinetics in the gas-to-liquid transition range and supercritical fluids under varying pressure. In this way, the essential differences between the regime of binary collisions in the low-pressure gas phase and tliat of a dense enviromnent with typical many-body interactions become apparent. An extremely useful approach in this respect is the investigation of rate coefficients, reaction yields and concentration-time profiles of some typical model reactions over as wide a pressure range as possible, which pemiits the continuous and well controlled variation of the physical properties of the solvent. Among these the most important are density, polarity and viscosity in a contimiiim description or collision frequency. [Pg.831]

Hydrothermal crystallisation processes occur widely in nature and are responsible for the formation of many crystalline minerals. The most widely used commercial appHcation of hydrothermal crystallization is for the production of synthetic quartz (see Silica, synthetic quartz crystals). Piezoelectric quartz crystals weighing up to several pounds can be produced for use in electronic equipment. Hydrothermal crystallization takes place in near- or supercritical water solutions (see Supercritical fluids). Near and above the critical point of water, the viscosity (300-1400 mPa s(=cP) at 374°C) decreases significantly, allowing for relatively rapid diffusion and growth processes to occur. [Pg.498]

The WAG process has been used extensively in the field, particularly in supercritical CO2 injection, with considerable success (22,157,158). However, a method to further reduce the viscosity of injected gas or supercritical fluid is desired. One means of increasing the viscosity of CO2 is through the use of supercritical C02-soluble polymers and other additives (159). The use of surfactants to form low mobihty foams or supercritical CO2 dispersions within the formation has received more attention (160—162). Foam has also been used to reduce mobihty of hydrocarbon gases and nitrogen. The behavior of foam in porous media has been the subject of extensive study (4). X-ray computerized tomographic analysis of core floods indicate that addition of 500 ppm of an alcohol ethoxyglycerylsulfonate increased volumetric sweep efficiency substantially over that obtained in a WAG process (156). [Pg.193]

A paiticularly attiactive and useful feature of supeicritical fluids is that these materials can have properties somewhere between those of a gas and a hquid (Table 2). A supercritical fluid has more hquid-hke densities, and subsequent solvation strengths, while possessiag transport properties, ie, viscosities and diffusivities, that are more like gases. Thus, an SCF may diffuse iato a matrix more quickly than a Hquid solvent, yet still possess a Hquid-like solvent strength for extracting a component from the matrix. [Pg.221]

Polymers and Supercritical Fluids. Prior to the mid-1980s, Httie information was pubhshed regarding polymer processing with supercritical and near-critical fluids (1). In 1985, the solubiUties of many polymers in near- and supercritical CO2 were reported. These polymers were examined for thek abiUty to increase viscosity in C02-enhanced oil recovery (24). Since then, a number of studies have examined solubiUties of polymers in... [Pg.223]

Reactions. Supercritical fluids are attractive as media for chemical reactions. Solvent properties such as solvent strength, viscosity, diffusivity, and dielectric constant may be adjusted over the continuum of gas-like to Hquid-like densities by varying pressure and temperature. Subsequently, these changes can be used to affect reaction conditions. A review encompassing the majority of studies and apphcations of reactions in supercritical fluids is available (96). [Pg.227]

Conventional nitrocellulose lacquer finishing leads to the emission of large quantities of solvents into the atmosphere. An ingeneous approach to reducing VOC emissions is the use of supercritical carbon dioxide as a component of the solvent mixture (172). The critical temperature and pressure of CO2 are 31.3°C and 7.4 MPa (72.9 atm), respectively. Below that temperature and above that pressure, CO2 is a supercritical fluid. It has been found that under these conditions, the solvency properties of CO2 ate similar to aromatic hydrocarbons (see Supercritical fluids). The coating is shipped in a concentrated form, then metered with supercritical CO2 into a proportioning airless spray gun system in such a ratio as to reduce the viscosity to the level needed for proper atomization. VOC emission reductions of 50% or more are projected. [Pg.357]

Supercritical Mixtures Dehenedetti-Reid showed that conven-tionaf correlations based on the Stokes-Einstein relation (for hquid phase) tend to overpredict diffusivities in the supercritical state. Nevertheless, they observed that the Stokes-Einstein group D g l/T was constant. Thus, although no general correlation ap es, only one data point is necessaiy to examine variations of fluid viscosity and/or temperature effects. They explored certain combinations of aromatic solids in SFg and COg. [Pg.595]

Transport Properties Although the densities of supercritical fluids approach those of conventional hquids, their transport properties are closer to those of gases, as shown for a typical SCF such as CO9 in Table 22-12. For example, the viscosity is several orders of magnitude lower than at liquidlike conditions. The self-diffusion coefficient ranges between 10" and 10" em /s, and binaiy-diffusiou coefficients are similar [Liong, Wells, and Foster, J. Supercritical Fluids 4, 91 (1991) Catchpole and King, Ind. Eng. Chem. Research, 33,... [Pg.2001]

Supercritical fluid chromatography (SFC) refers to the use of mobile phases at temperatures and pressures above the critical point (supercritical) or just below (sub-critical). SFC shows several features that can be advantageous for its application to large-scale separations [132-135]. One of the most interesting properties of this technique is the low viscosity of the solvents used that, combined with high diffusion coefficients for solutes, leads to a higher efficiency and a shorter analysis time than in HPLC. [Pg.12]

The use of both sub- and supercritical fluids as eluents yields mobile phases with increased diffusivity and decreased viscosity relative to liquid eluents [23]. These properties enhance chromatographic efficiency and improve resolution. Higher efficiency in SFC shifts the optimum flowrate to higher values so that analysis time can be reduced without compromising resolution [12]. The low viscosity of the eluent also reduces the pressure-drop across the chromatographic column and facilitates the... [Pg.301]

The high diffusivity and low viscosity of sub- and supercritical fluids make them particularly attractive eluents for enantiomeric separations. Mourier et al. first exploited sub- and supercritical eluents for the separation of phosphine oxides on a brush-type chiral stationary phase [28]. They compared analysis time and resolution per unit time for separations performed by LC and SFC. Although selectivity (a) was comparable in LC and SFC for the compounds studied, resolution was consistently... [Pg.302]

Ionic liquids have been described as designer solvents [11]. Properties such as solubility, density, refractive index, and viscosity can be adjusted to suit requirements simply by making changes to the structure of either the anion, or the cation, or both [12, 13]. This degree of control can be of substantial benefit when carrying out solvent extractions or product separations, as the relative solubilities of the ionic and extraction phases can be adjusted to assist with the separation [14]. Also, separation of the products can be achieved by other means such as, distillation (usually under vacuum), steam distillation, and supercritical fluid extraction (CO2). [Pg.174]

Supercritical fluids (SCFs) are compounds that exist at a temperature and pressure that are above their corresponding critical values [70,71]. They exhibit the properties of both gases and Hquids. With gases, they share the properties of low surface tension, low viscosity, and high diffusivity. Their main Hquid-like feature is the density, which results in enhanced solubility of solutes compared with the solubility of gases. Furthermore, the solubility of solutes can be manipulated by changes in pressure and temperature near the critical point [72]. [Pg.109]

Above a sufficiently high temperature and pressure, called the critical point (shown by a red dot), the distinction between the gas phase and the liquid phase disappears. Instead, the substance is a supercritical fluid, with viscosity typical of a liquid but able to expand or contract like a gas. [Pg.807]

A supercritical fluid exhibits physical-chemical properties intermediate between those of liquids and gases. Mass transfer is rapid with supercritical fluids. Their dynamic viscosities are nearer to those in normal gaseous states. In the vicinity of the critical point the diffusion coefficient is more than 10 times that of a liquid. Carbon dioxide can be compressed readily to form a liquid. Under typical borehole conditions, carbon dioxide is a supercritical fluid. [Pg.11]

Supercritical fluid extraction (SFE) is a technique in which a supercritical fluid [formed when the critical temperature Tf) and critical pressure Pf) for the fluid are exceeded simultaneously] is used as an extraction solvent instead of an organic solvent. By far the most common choice of a supercritical fluid is carbon dioxide (CO2) because CO2 has a low critical temperature (re = 31.1 °C), is inexpensive, and is safe." SFE has the advantage of lower viscosity and improved diffusion coefficients relative to traditional organic solvents. Also, if supercritical CO2 is used as the extraction solvent, the solvent (CO2) can easily be removed by bringing the extract to atmospheric pressure. Supercritical CO2 itself is a very nonpolar solvent that may not have broad applicability as an extraction solvent. To overcome this problem, modifiers such as methanol can be used to increase the polarity of the SFE extraction solvent. Another problem associated with SFE using CO2 is the co-extraction of lipids and other nonpolar interferents. To overcome this problem, a combination of SFE with SPE can be used. Stolker et al." provided a review of several SFE/SPE methods described in the literature. [Pg.306]

The viscosities of supercritical fluids are intermediate between those of a gas and a liquid, but this tine, are much closer to those of a gas than a liquid. For a fixed column pressure drop much longer columns or higher flow rates are possible in SFC compared to liquid chromatography. Liquids, however, are virtually incompressible while gases and... [Pg.307]

Table 3.12 Density, viscosity, and diffusion coefficient of gas, liquid and supercritical fluids... Table 3.12 Density, viscosity, and diffusion coefficient of gas, liquid and supercritical fluids...
In general, the properties of supercritical fluids make them interesting media in which to conduct chemical reactions. A supercritical fluid can be defined as a substance or mixture at conditions which exceed the critical temperature (Tc) and critical pressure (Pc). One of the primary advantages of employing a supercritical fluid as the continuous phase lies in the ability to manipulate the solvent strength (dielectric constant) simply by varying the temperature and pressure of the system. Additionally, supercritical fluids have properties which are intermediate between those of a liquid and those of a gas. As an illustration, a supercritical fluid can have liquid-like density and simultaneously possess gas-like viscosity. For more information, the reader is referred to several books which have been published on supercritical fluid science and technology [1-4],... [Pg.106]


See other pages where Supercritical fluid viscosity is mentioned: [Pg.92]    [Pg.641]    [Pg.92]    [Pg.641]    [Pg.215]    [Pg.596]    [Pg.223]    [Pg.2000]    [Pg.2000]    [Pg.300]    [Pg.301]    [Pg.135]    [Pg.386]    [Pg.730]    [Pg.6]    [Pg.307]    [Pg.817]    [Pg.916]    [Pg.81]    [Pg.212]    [Pg.310]    [Pg.311]    [Pg.19]    [Pg.110]    [Pg.132]    [Pg.248]    [Pg.150]    [Pg.262]    [Pg.110]   
See also in sourсe #XX -- [ Pg.124 ]

See also in sourсe #XX -- [ Pg.70 ]

See also in sourсe #XX -- [ Pg.573 ]




SEARCH



Supercritical fluid chromatography viscosity

Supercritical fluids viscosity reduction effects

Supercritical fluids, properties viscosity

Viscosity, fluid

Viscosity, of supercritical fluids

© 2024 chempedia.info