Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical fluids compatible with flame ionization

Supercritical fluid chromatography provides increased speed and resolution, relative to liquid chromatography, because of increased diffusion coefficients of solutes in supercritical fluids. (However, speed and resolution are slower than those of gas chromatography.) Unlike gases, supercritical fluids can dissolve nonvolatile solutes. When the pressure on the supercritical solution is released, the solvent turns to gas. leaving the solute in the gas phase for easy detection. Carbon dioxide is the supercritical fluid of choice for chromatography because it is compatible with flame ionization and ultraviolet detectors, it has a low critical temperature. and it is nontoxic. [Pg.568]

An on-line supercritical fluid chromatography-capillary gas chromatography (SFC-GC) technique has been demonstrated for the direct transfer of SFC fractions from a packed column SFC system to a GC system. This technique has been applied in the analysis of industrial samples such as aviation fuel (24). This type of coupled technique is sometimes more advantageous than the traditional LC-GC coupled technique since SFC is compatible with GC, because most supercritical fluids decompress into gases at GC conditions and are not detected by flame-ionization detection. The use of solvent evaporation techniques are not necessary. SFC, in the same way as LC, can be used to preseparate a sample into classes of compounds where the individual components can then be analyzed and quantified by GC. The supercritical fluid sample effluent is decompressed through a restrictor directly into a capillary GC injection port. In addition, this technique allows selective or multi-step heart-cutting of various sample peaks as they elute from the supercritical fluid... [Pg.325]

The nature of a supercritical fluid enables both gas and liquid chromatographic detectors to be used in SFC. Flame ionization (FID), nitrogen phosphorus (NPD), flame photometric (FPD) GC detectors (p. 100 etseq.) and UV and fluorescence HPLC monitors are all compatible with a supercritical fluid mobile phase and can be adapted to operate at the required pressures (up to several hundred bar). A very wide range of solute types can therefore be detected in SFC. In addition the coupled or hyphenated techniques of SFC-MS and SFC-FT-IR are attractive possibilities (cf. GC-MS and GC-IR, p. 114 el seq.). [Pg.151]

Pure fluids. Carbon dioxide is often the mobile phase of choice for SFC, since it has relatively mild critical parameters, is nontoxic and inexpensive, chemically inert, and is compatible with a wide variety of detectors including the flame ionization detector (FID) used widely in GC and the UV absorbance detector employed frequently in HPLC (7). The usefulness of carbon dioxide as a mobile phase in many instances is somewhat limited, however, because of its nonpolarity (8), and many polar compounds appear to be insoluble in it. For a sample containing polar compounds, pure carbon dioxide may not be the proper mobile phase. The elution of polar compounds is often difficult and the peak shapes for these polar compounds are sometimes poor. This latter difficulty is commonly observed with nonpolar supercritical fluids and may be due to active sites on the stationary phase rather than any inherent deficiency in the fluid itself. [Pg.309]

One of the major advantages of SFC is its compatibility with both GC and HPLC detectors. GC flame detectors, such as the flame ionization detector (FID) [11,12], nitrogen thermionic detector [12,13], and flame photometric detector [14] have all been interfaced with SFC systems using a capillary restrictor which, while maintaining supercritical conditions in the column, also effectively decompresses the fluid to ambient pressure just before it enters the flame tip [10,15]. HPLC detectors such as ultraviolet and fluorescence detectors are employed when pure organic mobile phases or modified mobile phases are used. With these detectors, analytes are detected spectroscopically in a flow-through cell prior to decompression [16]. [Pg.223]


See other pages where Supercritical fluids compatible with flame ionization is mentioned: [Pg.61]    [Pg.144]    [Pg.391]   


SEARCH



Flame ionization

© 2024 chempedia.info