Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical carbon dioxide replacement solvent

Solvent-assisted decaffeination of coffee can result in residues of solvent reaching the consumer.208 The use of chlorinated hydrocarbon solvents such as chloroform,209 methylene chloride, trichloroethylene,208 and difluoromonochloromethane (Freon),210 will probably be replaced by compounds already found in roasted coffee. The use of an ethyl acetate and 2-butanone mixture leaves a 26-ppm residue in green coffee, but zero residue in roasted coffee.211 Other solvent compounds used or suggested for coffee improvement or decaffeination include propane, butane,212 carbon dioxide,213 214 acetone215 dimethyl succinate,2161,1-dimethoxymethane, and 1,1-dimethoxyethane.217 Of all these, supercritical carbon dioxide, ethyl acetate, and methylene chloride are the solvents most used currently in decaffeination processes. [Pg.157]

Another challenge is to develop methods to replace the volatile organic solvents that are used in many industrial procedures. One choice is water as a solvent it is easily repurified, and has a harmless vapor. Another choice is supercritical carbon dioxide, a good solvent for many organic substances. It is not as innocuous as is water, but carbon dioxide can be easily recovered and reused. It is currently used to remove caffeine from coffee, and is being developed as a dry-cleaning solvent to replace organic solvents (Chapter 9). [Pg.143]

Supercritical fluids also find application in the areas of pollution prevention and remediation, and supercritical carbon dioxide is used as a replacement solvent for many hazardous solvents in both extraction and separation processes and also as a reaction medium and in materials processing. Although carbon dioxide is considered as a greenhouse gas , there is actually no net increase in the amount of the gas if it is removed from the environment, used as the solvent instead of a hazardous substance, and returned to the environment. In this way, most of the uses of supercritical carbon dioxide may be considered as environmentally friendly. Because the solubilities of oils and greases in carbon dioxide are high, it is particularly suited to the cleaning of machinery 47 and, as discussed in the literature 48, it is used as a solvent in textile dyeing operations where it is used to treat any dye-laden... [Pg.764]

Another environmental issue is the use of organic solvents. The use of chlorinated hydrocarbons, for example, has been severely curtailed. In fact, so many of the solvents favored by organic chemists are now on the black list that the whole question of solvents requires rethinking. The best solvent is no solvent, and if a solvent (diluent) is needed, then water has a lot to recommend it. This provides a golden opportunity for biocatalysis, since the replacement of classic chemical methods in organic solvents by enzymatic procedures in water at ambient temperature and pressure can provide substantial environmental and economic benefits. Similarly, there is a marked trend toward the application of organometal-lic catalysis in aqueous biphasic systems and other nonconventional media, such as fluorous biphasic, supercritical carbon dioxide and ionic liquids. ... [Pg.195]

Homogeneous molecular catalysts, which have far greater connol over selectivity than heterogeneous solid catalysts, are now being tested in SCFs, and early results show that high rates, improved selectivity, and elimination of mass-transfer problems can be achieved. Supercritical carbon dioxide may be an ideal replacement medium for nonpolar or weakly polar chemical processes. More than simply substitutes for nonpolar solvents, SCFs can radically change the observed chemistry (Jessop et al., 1995). [Pg.154]

Supercritical carbon dioxide is an apolar solvent, thus it is able to replace hexane during separation of the unreacted enantiomer from the diastereoisomeric complex containing reaction mixture. This idea was successfully applied in the complex forming resolution of tram-2-halogenocyclohexanols (35, 36, 37) and menthol (28). [42, 43] Diastereo-isomeric complex formation reaction was carried out in the mixture of the hexane solution of the racemic ligand and less then an equivalent amount of pulverised DBTA monohydrate. [Pg.92]

Chapter 7 addresses another key topic in the context of green chemistry the replacement of traditional, environmentally unattractive organic solvents by greener alternative reaction media such as water, supercritical carbon dioxide, ionic liquids and perfluorous solvents. The use of liquid/liquid biphasic systems provides the additional benefit of facile catalyst recovery and recycling. [Pg.450]

Perfluoropolyether fluids (ex., Krytox ) are commonly used as lubricants, dielectric fluids or heat transfer fluids in a number of space and military products. These fluids and other perfluorolubricants are almost impossible to dissolve in solvents other than halocarbons. Additionally, other halogenated damping fluids have compatibility problems with some of the common solvents which can dissolve the fluid. Early experiments with supercritical carbon dioxide indicated that it would dissolve both halogenated damping fluids and perfluoropolyether lubricants and thus was a candidate as a replacement solvent cleaning process. [Pg.199]

Water has been shown to be an effective solvent in some chemical reactions such as free radical bromination. Supercritical fluids such as liquified carbon dioxide are already commonly used in coffee decaffeination and hops extraction. However, supercritical carbon dioxide can also be used as a replacement for organic solvents in polymerization reactions and surfactant production. Future work may involve solventless or neat reactions such as molten-state reactions, dry grind reactions, plasma-supported reactions, or solid materials-based reactions that use clay or zeolites as carriers. [Pg.333]

Carbon dioxide is, by far, the most attractive SCF for many reasons It is inexpensive and abundant at high purity (food grade) worldwide and it is nonflammable, non-toxic, and environment friendly moreover, its critical temperature T = 31 °C) permits operations at near-ambient temperature which avoids product alteration and its critical pressure (= 74 bar) leads to acceptable operation pressure, generally between 100 and 350 bar. In fact, supercritical carbon dioxide behaves as a rather weak nonpolar solvent, but its solvent power and polarity can be significantly increased by adding a polar cosolvent that is chosen among alcohols, esters, and ketones. Ethanol is often preferred because it is not hazardous to the environment, not very toxic, and available pure at low cost. Hydro fluorocarbons (HFCs) are very costly and their specific properties rarely justify their use in the replacement of carbon dioxide. [Pg.616]

Supercritical carbon dioxide is also useful in a variety of applications as a replacement for organic solvents. Union Carbide markets a process for spray-painting in... [Pg.213]


See other pages where Supercritical carbon dioxide replacement solvent is mentioned: [Pg.196]    [Pg.214]    [Pg.713]    [Pg.744]    [Pg.744]    [Pg.301]    [Pg.1361]    [Pg.306]    [Pg.412]    [Pg.136]    [Pg.215]    [Pg.891]    [Pg.458]    [Pg.110]    [Pg.272]    [Pg.243]    [Pg.149]    [Pg.174]    [Pg.274]    [Pg.481]    [Pg.423]    [Pg.20]    [Pg.136]    [Pg.215]    [Pg.187]    [Pg.391]    [Pg.10]    [Pg.22]    [Pg.23]    [Pg.80]    [Pg.606]    [Pg.118]    [Pg.213]    [Pg.267]    [Pg.300]    [Pg.28]    [Pg.166]    [Pg.230]   
See also in sourсe #XX -- [ Pg.132 , Pg.133 , Pg.134 , Pg.135 , Pg.136 , Pg.137 , Pg.138 , Pg.139 , Pg.140 , Pg.141 , Pg.142 , Pg.143 , Pg.144 , Pg.145 , Pg.146 ]




SEARCH



Carbon dioxide solvent

Carbon solvents

Paint solvents, replacement supercritical carbon dioxide

Solvent carbonate

Solvents supercritical carbon dioxide

Supercritical carbon dioxid

Supercritical carbon dioxide

Supercritical solvents

© 2024 chempedia.info