Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Superacids types

Zeolites such as HZSM-5 were considered as superacids on the basis of the initial product distribution in accord with C-H and C-C bond protolysis when isoalkanes were reacted at 500°C (the Haag and Dessau mechanism).135 The reactivity was assigned to superacidic sites in the zeolite framework.136 The superacid character of other solid acids was claimed on the basis of Hammett indicator color change137,138 or on the basis of UV spectrophotometric measurements.139,140 In 2000, a special issue of Microporous and Mesoporous Materials141 was devoted to the superacid-type hydrocarbon chemistry taking place on solid acids as suggested by the late Werner Haag. [Pg.64]

Different types of other coal liquefaction processes have been also developed to convert coals to liqnid hydrocarbon fnels. These include high-temperature solvent extraction processes in which no catalyst is added. The solvent is usually a hydroaromatic hydrogen donor, whereas molecnlar hydrogen is added as a secondary source of hydrogen. Similar but catalytic liquefaction processes use zinc chloride and other catalysts, usually under forceful conditions (375-425°C, 100-200 atm). In our own research, superacidic HF-BFo-induced hydroliquefaction of coals, which involves depolymerization-ionic hydrogenation, was found to be highly effective at relatively modest temperatnres (150-170°C). [Pg.132]

In superacidic media, the carbocationic iatermediates, which were long postulated to exist duting Friedel-Crafts type reactions (9—11) can be observed, and even isolated as salts. The stmctures of these carbocations have been studied ia high acidity—low nucleophilicity solvent systems usiag spectroscopic methods such as nmr, ir, Raman, esr, and x-ray crystallography. [Pg.552]

Sulfonated styrene—divinylbensene cross-linked polymers have been appHed in many of the previously mentioned reactions and also in the acylation of thiophene with acetic anhydride and acetyl chloride (209). Resins of this type (Dowex 50, Amherljte IR-112, and Permutit Q) are particularly effective catalysts in the alkylation of phenols with olefins (such as propylene, isobutylene, diisobutylene), alkyl haUdes, and alcohols (210) (see Ion exchange). Superacids. [Pg.564]

Although H2S is normally a weak acid, it functions as a base in a superacid such as HF/SbF5 in liquid HF. The H3S+ ion is generated, and although solid H3S+SbF5 has been obtained, there is very limited chemistry associated with this type of compound. [Pg.528]

The generation of a-ferrocenyl-P-silyl substituted vinyl cations of type 28 does not require superacidic conditions, they can be generated by protonation of l-ferrocenyl-2-trialkylsilyl alkynes with trifluoroacetic acid at room temperature. The SiR3-groups with larger alkyl substituents increase the lifetime of this type of carbocations. [Pg.32]

Besides the intramolecular acyl-transfer reactions, electrophilic activation is shown to occur with intermolecular Friedel-Craft-type reactions.18 When the simple amides (45a,b) are reacted in the presence of superacid, the monoprotonated species (46a,b) is unreactive towards benzene (eq 18). Although in the case of 45b a trace amount of benzophenone is detected as a product, more than 95% of the starting amides 45a,b are isolated upon workup. In contrast, amides 47 and 48 give the acyl-transfer products in good yields (eqs 19-20). It was proposed that dications 49-50 are formed in the superacidic solution. The results indicate that protonated amino-groups can activate the adjacent (protonated) amide-groups in acyl-transfer reactions. [Pg.165]

The tendency in the past decades has been to replace them with solid acids (Figure 13.1). These solid acids could present important advantages, decreasing reactor and plant corrosion problems (with simpler and safer maintenance), and favoring catalyst regeneration and environmentally safe disposal. This is the case of the use of zeolites, amorphous sihco-aluminas, or more recently, the so-called superacid solids, that is, sulfated metal oxides, heteropolyoxometalates, or nation (Figure 13.1). It is clear that the well-known carbocation chemistry that occurs in liquid-acid processes also occurs on the sohd-acid catalysts (similar mechanisms have been proposed in both catalyst types) and the same process variables that control liquid-acid reactions also affect the solid catalyst processes. [Pg.252]

Several metal oxides could be used as acid catalysts, although zeolites and zeo-types are mainly preferred as an alternative to liquid acids (Figure 13.1). This is a consequence of the possibility of tuning the acidity of microporous materials as well as the shape selectivity observed with zeolites that have favored their use in new catalytic processes. However, a solid with similar or higher acid strength than 100% sulfuric acid (the so-called superacid materials) could be preferred in some processes. From these solid catalysts, nation, heteropolyoxometalates, or sulfated metal oxides have been extensively studied in the last ten years (Figure 13.2). Their so-called superacid character has favored their use in a large number of acid reactions alkane isomerization, alkylation of isobutene, or aromatic hydrocarbons with olefins, acylation, nitrations, and so forth. [Pg.253]

Benzylic-type cations derived from PAHs have been studied under superacid conditions, where, not surprisingly, they are relatively stable.Lifetimes in water of diastereomeric forms of the benzo[a]pyrene derivative (100) have been deter-... [Pg.33]

As a general comment, the cations that have been implicated in such biosyntheses are of the type for which analogues have been observed in superacids. However, many of these cations, (e.g., 106 and 109) would have a questionable existence as a free cation in an aqueous solution. This finding raises an interesting question whether they do have more than a fleeting existence within the active site of the enzyme. Does the enzyme provide some form of stabilization, such as that suggested when 106 is formed in the active site of isopentenyl diphosphate dimethylallyl diphosphate isomerase ... [Pg.35]

Different catalysts bring about different types of isomerization of hydrocarbons. Acids are the best known and most important catalysts bringing about isomerization through a carbocationic process. Brpnsted and Lewis acids, acidic solids, and superacids are used in different applications. Base-catalyzed isomerizations of hydrocarbons are less frequent, with mainly alkenes undergoing such transformations. Acetylenes and allenes are also interconverted in base-catalyzed reactions. Metals with dehydrogenating-hydrogenating activity usually supported on oxides are also used to bring about isomerizations. Zeolites with shape-selective characteristics... [Pg.160]

Hull and Conant in 1927 showed that weak organic bases (ketones and aldehydes) will form salts with perchloric acid in nonaqueous solvents. This results from the ability of perchlonc aad in nonaqueous systems to protonate these weak bases. These early investigators called such a system a superacid. Some authorities believe that any protic acid that is stronger than sulfunc aad (100%) should be typed as a superaad. Based upon this criterion, fluorosulfuric arid and trifluoro-methanesulfonic acid, among others, are so classified. Acidic oxides (silica and silica-aluminai have been used as solid acid catalysts for many years. Within the last few years, solid acid systems of considerably greater strength have been developed and can he classified as solid superacids. [Pg.13]

More recently, development of the superacid solvent systems has permitted the preparation at low temperature of stable solutions of carbocations of many structural types. The solvents ordinarily used consist of the strong Lewis acid antimony pentafluoride with or without an added protonic acid, usually hydro-... [Pg.234]

Occasionally rearrangements from more stable to less stable carbocations occur, but only if (1) the energy difference between them is not too large or (2) the carbocation that rearranges has no other possible rapid reactions open to it.9 For example, in superacid medium, in the temperature range 0-40°C, the proton nmr spectrum of isopropyl cation indicates that the two types of protons are exchanging rapidly. The activation energy for the process was found to be 16 kcal mole-1. In addition to other processes, the equilibrium shown in Equation 6.7 apparently occurs.10 In the superacid medium, no Lewis base is available... [Pg.270]

A quantitative determination of the strength of Lewis acids to establish similar scales (Ho) as discussed in the case of protic (Br0nsted-type) superacids would be most useful. However, to establish such a scale is extremely difficult. Whereas the Brpnsted acid-base interaction invariably involves a proton transfer reaction that allows meaningful comparison, in the Lewis acid-base interaction, involving for example Lewis acids with widely different electronic and steric donating substituents, there is no such common denominator.25,26 Hence despite various attempts, the term strength of Lewis acid has no well-defined meaning. [Pg.8]

As discussed, superacids, similar to conventional acid systems, include both Brpnsted and Lewis acids and their conjugate systems. Protic (Brpnsted-type) superacids include strong parent acids and the mixtures thereof, whose acidity can be further enhanced by various combinations with Lewis acids (conjugate acids). The following are the most frequently used superacids. [Pg.9]

Subsequently, the development of both theoretical DFT methods and more sophisticated ab initio high-level MP2-type calculations has also spurred investigations in the superacid field. [Pg.23]

The key of alkane transformation was assigned to the formation of CX3+-type cations that are electrophilic enough (probably due to a second complexation of A1X3), to abstract a hydride anion from linear and cycloalkanes. When these cations are generated in superacidic media, a protosolvation induces a superelectrophilic character, which was supported by Olah on the basis of high-level ab initio calculations 65 The generation of these cations was also used by various teams66,67 to initiate selective low temperature alkane activation. [Pg.46]

The acidic sites of solid acids may be of either the Brpnsted (proton donor, often OH group) or Lewis type (electron acceptor). Both types have been identified by IR studies of solid surfaces using the pyridine adsorption method. The absorption band at 1460 cm 1 is assigned to pyridine coordinated with the Lewis acid site, and another absorption at 1540 cm 1 is attributed to the pyridinium ion resulting from the protonation of pyridine by the Brpnsted acid sites. Various solids displaying acidic properties, whose acidities can be enhanced to the superacidity range, are listed in Table 2.6. [Pg.68]

Ways have been found to immobilize and/or to bind superacidic catalysts to an otherwise inert solid support. Several types are described in this section. [Pg.71]


See other pages where Superacids types is mentioned: [Pg.2786]    [Pg.807]    [Pg.292]    [Pg.2786]    [Pg.807]    [Pg.292]    [Pg.239]    [Pg.556]    [Pg.316]    [Pg.1435]    [Pg.1010]    [Pg.252]    [Pg.345]    [Pg.350]    [Pg.1457]    [Pg.97]    [Pg.166]    [Pg.97]    [Pg.97]    [Pg.390]    [Pg.371]    [Pg.96]    [Pg.116]    [Pg.216]    [Pg.415]    [Pg.195]    [Pg.9]    [Pg.9]    [Pg.35]    [Pg.63]    [Pg.74]    [Pg.110]    [Pg.176]   
See also in sourсe #XX -- [ Pg.9 ]




SEARCH



Solid superacids types

Superacid

Superacidity

Superacids

Types of Superacids

© 2024 chempedia.info