Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulphur properties

Think most diligently about this often bear in mind, observe and comprehend, that all minerals and metals together, in the same time, and after the same fashion, and of one and the same principal matter, are produced and generated. That matter is no other than a mere vapour, which is extracted from the elementary earth by the superior stars, or by a sidereal distillation of the macrocosm which sidereal hot infusion, with an airy sulphurous property, descending upon inferiors, so acts and operates as that there is implanted, spiritually and invisibly, a certain power and virtue in those metals and minerals which fume, moreover, resolves in the earth into a certain water, wherefrom all metals are thenceforth generated... [Pg.7]

NaBHiSj has sulphuration properties towards oxirans " to give bis-(2-hydroxyethyl) disulphides, and towards aldehydes (PhCHO PhCH SS-CHaPh) cyclic disulphides are formed with a 3-unsaturated ketones. ... [Pg.79]

COT is prepared by the polymerization of ethyne at moderate temperature and pressure in the presence of nickel salts. The molecule is non-planar and behaves as a typical cyclic olefin, having no aromatic properties. It may be catalytically hydrogenated to cyclo-octene, but with Zn and dil. sulphuric acid gives 1,3,6-cyclooclairiene. It reacts with maleic anhydride to give an adduct, m.p. 166 C, derived from the isomeric structure bicyclo-4,2,0-octa-2,4,7-triene(I) ... [Pg.122]

The collection of representative reservoir fluid samples is important in order to establish the PVT properties - phase envelope, bubble point, Rg, B, and the physical properties - composition, density, viscosity. These values are used to determine the initial volumes of fluid in place in stock tank volumes, the flow properties of the fluid both in the reservoir and through the surface facilities, and to identify any components which may require special treatment, such as sulphur compounds. [Pg.112]

Lead dioxide is slightly soluble in concentrated nitric acid and concentrated sulphuric acid, and it dissolves in fused alkalis. It therefore has amphoteric properties, although these are not well characteri.sed since it is relatively inert. [Pg.194]

Hence the strength of the acid goes up as sulphur trioxide is dissolved in it. The acidity of pure and fuming sulphuric acids is not so apparent as in ordinary aqueous acids because it is masked by the oxidising and other properties moreover, the conductivity... [Pg.302]

The presence of chloric(I) acid makes the properties of chlorine water different from those of gaseous chlorine, just as aqueous sulphur dioxide is very different from the gas. Chloric(I) acid is a strong oxidising agent, and in acid solution will even oxidise sulphur to sulphuric acid however, the concentration of free chloric(I) acid in chlorine water is often low and oxidation reactions are not always complete. Nevertheless when chlorine bleaches moist litmus, it is the chloric(I) acid which is formed that produces the bleaching. The reaction of chlorine gas with aqueous bromide or iodide ions which causes displacement of bromine or iodine (see below) may also involve the reaction... [Pg.323]

Both chloramine-T and dichloramine-T have marked antiseptic properties, chloramine-T being most frequently used because of its solubility in water. Aqueous solutions of chloramine-T can be used either for external application, or for internal application to the mouth, throat, etc, as chloramine-T in moderate quantities is non-toxic its aqueous solution can also be effectively used when the skin has come in contact with many of the vesicant liquid poison-gases, as the latter are frequently organic sulphur or arsenic derivatives which combine with or are oxidised by chloramine-T and are thus rendered harmless. [Pg.253]

The most widely used cleansing agent is the chromic acid cleaning mixture. It is essentially a mixture of chromic acid (CrOj) and concentrated sulphuric acid, and possesses powerful oxidising and solvent properties. Two methods of preparation are available —... [Pg.53]

Chakactkrisation of Unsaturatkd Aliphatic Hydrocarbons Unlike the saturated hydrocarbons, unsaturated aliphatic hydrocarbons are soluble in concentrated sulphuric acid and exhibit characteristic reactions with dUute potassium permanganate solution and with bromine. Nevertheless, no satisfactory derivatives have yet been developed for these hydrocarbons, and their characterisation must therefore be based upon a determination of their physical properties (boiling point, density and refractive index). The physical properties of a number of selected unsaturated hydrocarbons are collected in Table 111,11. [Pg.241]

It is marketed as a 35-40 per cent, solution in water (formalin). The rpactions of formaldehyde are partly typical of aldehydes and partly peculiar to itself. By evaporating an aqueous solution paraformaldehyde or paraform (CHjO), an amorphous white solid is produced it is insoluble in most solvents. When formaldehyde is distilled from a 60 per cent, solution containing 2 per cent, of sulphuric acid, it pol5unerises to a crystalline trimeride, trioxane, which can be extracted with methylene chloride this is crystalline (m.p. 62°, b.p. 115°), readily soluble in water, alcohol and ether, and devoid of aldehydic properties ... [Pg.319]

Prepare a saturated solution of sodium sulphide, preferably from the fused technical sodium polysulphide, and saturate it with sulphur the sulphur content should approximate to that of sodium tetrasulphide. To 50 ml. of the saturated sodium tetrasulphide solution contained in a 500 ml. round-bottomed flask provided with a reflux condenser, add 12 -5 ml. of ethylene dichloride, followed by 1 g. of magnesium oxide to act as catalyst. Heat the mixture until the ethylene dichloride commences to reflux and remove the flame. An exothermic reaction sets in and small particles of Thiokol are formed at the interface between the tetrasulphide solution and the ethylene chloride these float to the surface, agglomerate, and then sink to the bottom of the flask. Decant the hquid, and wash the sohd several times with water. Remove the Thiokol with forceps or tongs and test its rubber-like properties (stretching, etc.). [Pg.1024]

Nitriles and simple amides differ in physical properties the former are liquids or low-melting Solids, whilst the latter are generally solids. If the amide is a solid and insoluble in water, it may be readily prepared from the nitrile by dissolving in concentrated sulphuric acid and pouring the solution into water ... [Pg.1075]

Hydrolysis of a nitrile to an acid. Reflux 1 g. of the nitrile with 6 ml. of 30-40 per cent, sodium hydroxide solution until ammonia ceases to be evolved (2-3 hours). Dilute with 5 ml. of water and add, with coohng, 7 ml. of 50 per cent, sulphuric acid. Isolate the acid by ether extraction, and examine its solubility and other properties. [Pg.1077]

Separations based upon differences in the chemical properties of the components. Thus a mixture of toluene and anihne may be separated by extraction with dilute hydrochloric acid the aniline passes into the aqueous layer in the form of the salt, anihne hydrochloride, and may be recovered by neutralisation. Similarly, a mixture of phenol and toluene may be separated by treatment with dilute sodium hydroxide. The above examples are, of comse, simple apphcations of the fact that the various components fah into different solubihty groups (compare Section XI,5). Another example is the separation of a mixture of di-n-butyl ether and chlorobenzene concentrated sulphuric acid dissolves only the w-butyl other and it may be recovered from solution by dilution with water. With some classes of compounds, e.g., unsaturated compounds, concentrated sulphuric acid leads to polymerisation, sulphona-tion, etc., so that the original component cannot be recovered unchanged this solvent, therefore, possesses hmited apphcation. Phenols may be separated from acids (for example, o-cresol from benzoic acid) by a dilute solution of sodium bicarbonate the weakly acidic phenols (and also enols) are not converted into salts by this reagent and may be removed by ether extraction or by other means the acids pass into solution as the sodium salts and may be recovered after acidification. Aldehydes, e.g., benzaldehyde, may be separated from liquid hydrocarbons and other neutral, water-insoluble hquid compounds by shaking with a solution of sodium bisulphite the aldehyde forms a sohd bisulphite compound, which may be filtered off and decomposed with dilute acid or with sodium bicarbonate solution in order to recover the aldehyde. [Pg.1091]

Hughes, Ingold and Reed discussed the relative merits of the and e3 schemes as mechanisms for nitration by considering the properties of acetic acid, nitromethane, nitric acid and sulphuric acid as media for the reaction. The facts have already been discussed ( 2.2.3, 2.2.4, 2.3.2, 2.4.2, 2.4.3, 3-2). [Pg.108]

In the cases of 4-hydroxyquinoline and 4-methoxyquinoline the predominance of 6-nitration supports the evidence presented above that nitration in sulphuric acid proceeds via the cations. For both these compounds reaction via the neutral molecules would be expected to occur to a considerable extent at C(j) as a result of the directing properties of the hydroxyl and methoxyl groups. [Pg.215]


See other pages where Sulphur properties is mentioned: [Pg.581]    [Pg.581]    [Pg.18]    [Pg.110]    [Pg.116]    [Pg.226]    [Pg.231]    [Pg.330]    [Pg.2777]    [Pg.14]    [Pg.21]    [Pg.107]    [Pg.230]    [Pg.259]    [Pg.273]    [Pg.290]    [Pg.302]    [Pg.145]    [Pg.43]    [Pg.53]    [Pg.172]    [Pg.178]    [Pg.1026]    [Pg.1067]    [Pg.1]    [Pg.123]    [Pg.126]    [Pg.316]    [Pg.339]    [Pg.363]    [Pg.364]    [Pg.6]   
See also in sourсe #XX -- [ Pg.257 , Pg.258 ]

See also in sourсe #XX -- [ Pg.257 , Pg.258 ]




SEARCH



NMR Spectroscopic Properties of Sulphur

Properties of Sulphur

Sulphur atomic properties

Sulphur dioxide physical properties

Sulphur dyes dyeing properties

Sulphur dyes properties

Sulphur nuclear properties

Sulphur physical properties

Sulphuric acid properties

© 2024 chempedia.info