Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulphur control

Combatting air pollution will, for the first time, become a matter of international cooperation. The industrialized countries of Europe and North America will now have an instrument which will facilitate the development of more rational and mutually beneficial sulphur control policies. [Pg.487]

The most widely used reactions are those of electrophilic substitution, and under controlled conditions a maximum of three substituting groups, e.g. -NO2 (in the 1,3,5 positions) can be introduced by a nitric acid/sul-phuric acid mixture. Hot cone, sulphuric acid gives sulphonalion whilst halogens and a Lewis acid catalyst allow, e.g., chlorination or brom-ination. Other methods are required for introducing fluorine and iodine atoms. Benzene undergoes the Friedel-Crafts reaction. ... [Pg.55]

M.p. I08-5 C. Ordinary DDT contains about 15% of the 2,4 -isomer, and is prepared from chloral, chlorobenzene and sulphuric acid. It is non-phytotoxic to most plants. It is a powerful and persistent insecticide, used most effectively to control mosquitoes in countries where malaria is a problem. It is stored in the bodies of animals and birds. [Pg.125]

Crude lead contains traces of a number of metals. The desilvering of lead is considered later under silver (Chapter 14). Other metallic impurities are removed by remelting under controlled conditions when arsenic and antimony form a scum of lead(II) arsenate and antimonate on the surface while copper forms an infusible alloy which also takes up any sulphur, and also appears on the surface. The removal of bismuth, a valuable by-product, from lead is accomplished by making the crude lead the anode in an electrolytic bath consisting of a solution of lead in fluorosilicic acid. Gelatin is added so that a smooth coherent deposit of lead is obtained on the pure lead cathode when the current is passed. The impurities here (i.e. all other metals) form a sludge in the electrolytic bath and are not deposited on the cathode. [Pg.168]

Zinc dust of good quality usually contains only negligible quantities of halogen and sulphur, and is nitrogen-free. A blank for these elements should, however, be made with every fresh batch of reagent prepared if perceptible traces of halogen or sulphur are present, a blank or control test must be performed side by side with that on the organic compound, and the results compared. [Pg.326]

About 150 ml. of concentrated sulphuric acid is placed in the larger funnel and 100 ml. of concentrated hydrochloric acid in the smaller separatory funnel. The latter is raised until the capillary tube is above the sulphuric acid, the capillary tube is filled with concentrated hydrochloric acid, and the stopper replaced. The rate of evolution of hydrogen chloride is controlled by regulation of the supply of hydro chloric acid this will continue until a volume of hydrochloric acid equal to that of the concentrated sulphuric acid has been used. The diluted sulphuric acid should then be removed and the apparatus recharged. The yield is 31-33 g. of hydrogen chloride per 100 ml. of concentrated hydro chloric acid. If more than an equal volume of hydrochloric acid is employed, the yield of gas decreases and continues to be formed for a tune after the stopcock has been closed. [Pg.180]

Equip a 1-litre three-necked flask with a powerful mechanical stirrer, a separatory funnel with stem extending to the bottom of the flask, and a thermometer. Cool the flask in a mixture of ice and salt. Place a solution of 95 g. of A.R. sodium nitrite in 375 ml. of water in the flask and stir. When the temperature has fallen to 0° (or slightly below) introduce slowly from the separatory funnel a mixture of 25 ml. of water, 62 5 g. (34 ml.) of concentrated sulphuric acid and 110 g. (135 ml.) of n-amyl alcohol, which has previously been cooled to 0°. The rate of addition must be controlled so that the temperature is maintained at 1° the addition takes 45-60 minutes. AUow the mixture to stand for 1 5 hours and then filter from the precipitated sodium sulphate (1). Separate the upper yellow n-amyl nitrite layer, wash it with a solution containing 1 g. of sodium bicarbonate and 12 5 g. of sodium chloride in 50 ml. of water, and dry it with 5-7 g. of anhydrous magnesium sulphate. The resulting crude n-amyl nitrite (107 g.) is satisfactory for many purposes (2). Upon distillation, it passes over largely at 104° with negligible decomposition. The b.p. under reduced pressure is 29°/40 mm. [Pg.306]

By the controlled oxidation of primary alcohols with a solution of potassium or sodium dichromate in dilute sulphuric acid. To avoid the further oxidation to the corresponding acid, the aldehyde is removed as rapidly as possible by distillation through a fractionating column, for example ... [Pg.318]

Quinoline may be prepared by heating a mixture of aniline, anhydrous glycerol and concentrated sulphuric acid with an oxidising agent, such as nitrobenzene. The reaction with nitrobenzene alone may proceed with extreme violence, but by the addition of ferrous sulphate, which appears to function as an oxygen carrier, the reaction is extended over a longer period of time and Is under complete control. [Pg.828]

Hydroxyquinoline ( oxine ). The technique adopted in this preparation is based upon the fact that, in general, the reactants glycerol, amine, nitro compound and sulphuric acid can be mixed with temperature control, and then maintained at any convenient temperature below 120° without any appreciable chemical reaction taking place. A pre-mix of the amine, glycerol and sulphuric acid, maintained at a temperature which keeps it fluid (60-90°), is added in portions to a reaction vessel containiug the nitro compound and warmed with stirring to 140-170° at which temperature the Skraup reaction takes place. [Pg.830]

Prepare the zinc powder - sodium carbonate mixture by grinding together in a dry, clean mortar 25 g. of A.R. anhydrous sodium carbonate and 50 g. of the purest obtainable zinc powder. The reagent is unlikely to contain nitrogen, but traces of sulphur and halogens may be present. It is therefore essential to carry out a blank or control test for sulphur and halogens with every fresh batch of the mixture. [Pg.1044]

Nitration in sulphuric acid is a reaction for which the nature and concentrations of the electrophile, the nitronium ion, are well established. In these solutions compounds reacting one or two orders of magnitude faster than benzene do so at the rate of encounter of the aromatic molecules and the nitronium ion ( 2.5). If there were a connection between selectivity and reactivity in electrophilic aromatic substitutions, then electrophiles such as those operating in mercuration and Friedel-Crafts alkylation should be subject to control by encounter at a lower threshold of substrate reactivity than in nitration this does not appear to occur. [Pg.142]

Treatment Standards of Liquid Redox Waste in California, State of California Department of Health Services, Toxic Substances Control Program, Alternative Technology Division, June 1990 TuphurPolymer Cement Concrete, Design and Construction Manual, The Sulphur Institute, Washington, D.C., 1994. [Pg.127]

With the availability of 3.3 and 6.6 kV vacuum contactors the control of HT motors up to 6.6 kV systems has now become easier and economical, compact and even more reliable. For 11 kV. systems, vacuum as well as SF (Sulphur hexafluoride) breakers can be used. The HT motor s switching and protection through a vacuum contactor provides a replica of an LT system. The earlier practice of using an HT OCB, MOCB, or an air blast circuit breaker for the interruption of an HT circuit is now a concept of the past. [Pg.308]

Vanadium Pollution control, e.g. removal of hydrogen sulphide and in manufacture of sulphuric acid Respiratory irritation green-black tongue (transient)... [Pg.121]

Nitration Hazards arise from the strong oxidizing nature of the nitrating agents used (e.g. mixture of nitric and sulphuric acids) and from the explosive characteristics of some end products Reactions and side reactions involving oxidation are highly exothermic and may occur rapidly Sensitive temperature control is essential to avoid run-away... [Pg.249]


See other pages where Sulphur control is mentioned: [Pg.990]    [Pg.30]    [Pg.990]    [Pg.30]    [Pg.254]    [Pg.271]    [Pg.93]    [Pg.2669]    [Pg.2728]    [Pg.157]    [Pg.174]    [Pg.356]    [Pg.587]    [Pg.671]    [Pg.760]    [Pg.918]    [Pg.977]    [Pg.1004]    [Pg.28]    [Pg.48]    [Pg.114]    [Pg.169]    [Pg.17]    [Pg.274]    [Pg.296]    [Pg.305]    [Pg.617]    [Pg.824]    [Pg.254]    [Pg.727]    [Pg.122]    [Pg.122]    [Pg.233]    [Pg.57]    [Pg.73]    [Pg.111]   
See also in sourсe #XX -- [ Pg.139 , Pg.140 , Pg.141 , Pg.189 , Pg.208 ]




SEARCH



© 2024 chempedia.info