Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfuric acid construction

Materials of Construction. Resistance of alloys to concentrated sulfuric acid corrosion iacreases with increasing chromium, molybdenum, copper, and siUcon content. The corrosiveness of sulfuric acid solutions is highly dependent on concentration, temperature, acid velocity, and acid impurities. An excellent summary is available (114). Good general discussions of materials of constmction used ia modem sulfuric acid plants may be found ia References 115 and 116. More detailed discussions are also available (117—121). For nickel-containing alloys Reference 122 is appropriate. An excellent compilation of the relatively scarce Hterature data on corrosion of alloys ia Hquid sulfur trioxide and oleum may be found ia Reference 122. [Pg.189]

Nitrometer. An app used for the estimation of nitrogen in Inorganic and organic nitrates by their reaction with Hg and sulfuric acid. For details of construction and operation see Vol 1, A373-L to A377-L... [Pg.319]

C17-0128. Pure sulfuric acid (H2 SO4) is a viscous liquid that causes severe bums when it contacts the skin. Like water, sulfuric acid is amphiprotic, so a proton transfer equilibrium exists in pure sulfuric acid, (a) Write this proton transfer equilibrium reaction, (b) Construct the Lewis stmcture of sulfuric acid and identify the features that allow this compound to function as a base, (c) Perchloric acid (HCIO4) is a stronger acid than sulfuric acid. Write the proton transfer reaction that takes place when perchloric acid dissolves in pure sulfiaric acid. [Pg.1271]

By recognizing species in solution and their dominant equilibrium, we can construct titration curves for other diprotic acids. Example shows how this is done for sulfurous acid. [Pg.1303]

The traditional catalyst used for esterification of acids to methyl esters is sulfuric acid. Homogeneous sulfuric acid catalysis has many downsides. When using sulfuric acid, much capital expense is required for Hastalloy and/or other specialty metals of construction. Homogeneous catalysis results in the contamination of the product by sulfur containing species. Therefore, neutralization and removal of acid is required to meet biodiesel specifications and to protect the downstream transesterification reactor. Inevitably, when using sulfuric acid, organic sulfur compounds will be produced. These products will cause the resultant biodiesel to fail specification tests. [Pg.284]

The other advantages which sulfuric acid has as an inert electrolyte are (i) it increases the conductance of the bath (ii) it is inexpensive (iii) it strongly inhibits the hydrolysis of cuprous sulfate (iv) it is nonvolatile and may be used at high concentrations and temperatures and (v) it does not attack lead, so that it is possible to use this metal for plant construction. The only inconvenience of sulfuric acid is that copper dissolves in it essentially as the divalent ion this means that the current consumption is double of that which would be consumed if the electrolysis were to be carried out in an electrolyte solution containing Cu+ ions. Attempts to implement this alternative have not been very successful so that the use of sulfuric acid is yet to be challenged. [Pg.718]

The environmental problem of sulfur dioxide emission, as has been pointed out, is very much associated with sulfidic sources of metals, among which a peer example is copper production. In this context, it would be beneficial to describe the past and present approaches to copper smelting. In the past, copper metallurgy was dominated by reverberatory furnaces for smelting sulfidic copper concentrate to matte, followed by the use of Pierce-Smith converters to convert the matte into blister copper. The sulfur dioxide stream from the reverberatory furnaces is continuous but not rich in sulfur dioxide (about 1%) because it contains carbon dioxide and water vapor (products of fuel combustion), nitrogen from the air (used in the combustion of that fuel), and excess air. The gas is quite dilute and unworthy of economical conversion of its sulfur content into sulfuric acid. In the past, the course chosen was to construct stacks to disperse the gas into the atmosphere in order to minimize its adverse effects on the immediate surroundings. However, this is not an en-... [Pg.770]

Tanaka, N. et al., Corrosion resistance of materials of construction for high temperature sulfuric acid service in Thermochemical IS Process (Alloy 800, Alloy 600, SUSXM15J1 and SiC) (in Japanese), Zairyo-to-Kankyo, 55, 320, 2006. [Pg.158]

To get a complex set of substituents by direct derivatization of benzotriazole is not feasible. In such situations, it is better to have all the substituents in place first and later construct the heterocyclic ring. High reactivity of anilines and their well-developed chemistry makes them good stating materials. In an example shown in Scheme 215, acetanilide 1288 is nitrated to afford nitro derivative 1289 in 73% yield. Catalytic reduction of the nitro group provides methyl 4-acetylamino-3-amino-5-chloro-2-methoxybenzoate 1290 in 96% yield. Nitrosation of compound 1290 in diluted sulfuric acid leads to intermediate 1291, which without separation is heated to be converted to 7-chloro-4-methoxy-l//-benzotriazole-5-carboxylic acid 1292, isolated in 64% yield <2002CPB941>. [Pg.144]

WSA-SNOX A combined flue-gas treatment process which converts the sulfur dioxide to sulfuric acid and the nitrogen oxides to nitrogen. Developed by Snamprogetti and Haldor Topsoe, based on the WSA process. A large demonstration unit was under construction in 1989. [Pg.294]

Subpart Cb Designated Facilities—Existing Sulfuric Acid Units Subpart D Fossil-Fuel-Fired Steam Generators Constructed After 8/17/71... [Pg.126]

As the name suggests, the materials used in a lead-acid battery include lead and an acid. Figure 11.19 shows that the electrodes in each cell are constructed using lead grids. One electrode consists of powdered lead packed into one grid. The other electrode consists of powdered lead(IV) oxide packed into the other grid. The electrolyte solution is fairly concentrated sulfuric acid, at about 4.5 mol/L. [Pg.535]

Dissolve 20 g of the alkaloid (use any of the above or one of its isomers or a combination) in 200 ml of 1 M methanolic KOH solution (this is made by dissolving 14 g of KOH in 250 ml of dry methanol) in a 1 liter evaporation flask (heavy walled construction). Evaporate the methanol off Add 400 ml of 8% aqueous (water) KOH solution to the residue and boil for one hour under a slow stream of nitrogen that is allowed to flow through a small orifice for exhausting purposes. Cool, acidify with dilute sulfuric acid, and shake in a separatory funnel with 1 liter of dry ether. Separate the lower aqueous layer and filter it with vacuum assist. Wash the precipitate with 20 ml of dilute sulfuric acid. This is lysergic acid store as described later in this chapter. [Pg.57]

Industrial processes, such as mUling and mining, construction work, and the burning of wood or fossil fuel, generate particulates that can be directly toxic or can serve as vectors for the transfer of bound material, such as sulfuric acid, metals, and hydrocarbons, into the lungs. Natural products such as pollen, anthrax spores, and animal dander can elicit toxic reactions on inhalation or skin contact. The inhalation of asbestos, silica, or coal dust can cause pneumoconiosis, which may develop into serious lung disease. The size of the particle, ventilatory rate, and depth of breathing will determine the extent of pulmonary deposition. [Pg.67]

Dimerization of 2-hydroxy-4-methoxybenzaldehyde 208 was carried out using a mixture of pivalic anhydride and sulfuric acid. The product double 1,3-dioxane 209 was obtained in 96% yield (Scheme 98) <20000L1613>. Other anhydrides were less efficient. The product was used for the construction of the core unit of preussomerins <2004TL4877, 2004OBC2483>. [Pg.823]


See other pages where Sulfuric acid construction is mentioned: [Pg.2425]    [Pg.2451]    [Pg.1212]    [Pg.274]    [Pg.122]    [Pg.636]    [Pg.156]    [Pg.173]    [Pg.729]    [Pg.1470]    [Pg.12]    [Pg.771]    [Pg.84]    [Pg.185]    [Pg.1304]    [Pg.367]    [Pg.459]    [Pg.116]    [Pg.253]    [Pg.905]    [Pg.509]    [Pg.109]    [Pg.64]    [Pg.966]    [Pg.318]    [Pg.735]    [Pg.37]    [Pg.414]    [Pg.202]    [Pg.300]    [Pg.146]    [Pg.146]    [Pg.188]    [Pg.189]    [Pg.189]   
See also in sourсe #XX -- [ Pg.158 ]




SEARCH



Sulfuric acid plant materials of construction

© 2024 chempedia.info