Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur oxides, atmospheric

The Type K thermocouple (Table 11.59) is more resistant to oxidation at elevated temperatures than the Type E, J, or T thermocouple, and consequently finds wide application at temperatures above 500°C. It is recommended for continuous use at temperatures within the range — 250 to 1260°C in inert or oxidizing atmospheres. It should not be used in sulfurous or reducing atmospheres, or in vacuum at high temperatures for extended times. [Pg.1216]

Hafnium metal is analy2ed for impurities using analytical techniques used for 2irconium (19,21,22). Carbon and sulfur in hafnium are measured by combustion, followed by chromatographic or in measurement of the carbon and sulfur oxides (19). Chromatographic measurement of Hberated hydrogen follows the hot vacuum extraction or fusion of hafnium with a transition metal in an inert atmosphere (23,24). [Pg.443]

In the electromotive force series of the elements, silver is less noble than only Pd, Hg, Pt, and Au. AH provide high corrosion resistance. Silver caimot form oxides under ambient conditions. Its highly reactive character, however, results in the formation of black sulfides on exposure to sulfur-containing atmospheres. [Pg.82]

Sulfur oxides (SO,) are compounds of sulfur and oxygen molecules. Sulfur dioxide (SO2) is the predominant form found in the lower atmosphere. It is a colorless gas that can be detected by taste and smell in the range of 1, (X)0 to 3,000 uglm. At concentrations of 10,000 uglm , it has a pungent, unpleasant odor. Sulfur dioxide dissolves readily in water present in the atmosphere to form sulfurous acid (H SOj). About 30% of the sulfur dioxide in the atmosphere is converted to sulfate aerosol (acid aerosol), which is removed through wet or dry deposition processes. Sulfur trioxide (SO3), another oxide of sulfur, is either emitted directly into the atmosphere or produced from sulfur dioxide and is readily converted to sulfuric acid (H2SO4). [Pg.38]

Health effects attributed to sulfur oxides are likely due to exposure to sulfur dioxide, sulfate aerosols, and sulfur dioxide adsorbed onto particulate matter. Alone, sulfur dioxide will dissolve in the watery fluids of the upper respiratory system and be absorbed into the bloodstream. Sulfur dioxide reacts with other substances in the atmosphere to form sulfate aerosols. Since most sulfate aerosols are part of PMj 5, they may have an important role in the health impacts associated with fine particulates. However, sulfate aerosols can be transported long distances through the atmosphere before deposition actually occurs. Average sulfate aerosol concentrations are about 40% of average fine particulate levels in regions where fuels with high sulfur content are commonly used. Sulfur dioxide adsorbed on particles can be carried deep into the pulmonary system. Therefore, reducing concentrations of particulate matter may also reduce the health impacts of sulfur dioxide. Acid aerosols affect respiratory and sensory functions. [Pg.39]

The gaseous component typically contains hydrocarbons, hydrogen sulfide, ammonia, mercaptans, solvents, and other constituents, and is either discharged directly to the atmosphere or is combusted in a flare. The major air emissions from blowdown systems are hydrocarbons in the case of direct discharge to the atmosphere and sulfur oxides when flared. [Pg.100]

Sulfur oxide emissions enter the atmosphere from a variety of sources, some of human origin, others of natural origin. The main sulfur oxide is sulfur dioxide, or SO,. [Pg.51]

High levels of sulfur not only form dangerous oxides, but they also tend to poison the catalyst in the catalytic converter. As it flows over the catalyst in the exliaust system, the sulfur decreases conversion efficiency and limits the catalyst s oxygen storage capacity. With the converter working at less than maximum efficiency, the exhaust entering the atmosphere contains increased concentrations, not only of the sulfur oxides but also, of hydrocarbons, nitrogen oxides, carbon monoxides, toxic metals, and particulate matter. [Pg.552]

The process will adversely affect air quality by releasing nitrogen oxides, sulfur oxides, carbon monoxides and other particulates into the atmosphere. Better control of the conversion conditions and better control of emissions can make the process cleaner, yet technology cannot do anything to curb carbon emissions. Since much of the carbon in coal is converted to carbon dioxide in the synthesis process, and is not part of the synthetic fuel itself, the amount of carbon dioxide that will be released to the environment during combustion is 50 to 100 percent more than coal, and around three times more than natural gas. [Pg.1117]

Precipitation over North America gradually becomes more acidic from west to east, especially in industrialized areas of the Northeast. This acid rain may be a result of the release of nitrogen and sulfur oxides into the atmosphere. The colors and numbers (see key) indicate pH measured at field laboratories in 2004. Data from National Atmospheric Deposition Program/National Trends Network http //nadp.sws.uiuc.edu. [Pg.551]

Industry and transport contribute another 1.5 X 1011 kg of the dioxide, of which about 70% comes from oil and coal combustion—mainly in electricity-generating plants. Because, like many other countries, both the United States and Canada have increased restrictions on emissions of sulfur oxides, emissions of S02 into the atmosphere in Canada fell 50% between 1980 and 2000 and in the United States they fell 40% during the same period (see Box 10.1). [Pg.757]

Acid rain. Natural (unpolluted) precipitation is naturally acidic with a pH often in the range of 5 to 6 caused by carbonic acid from dissolved carbon dioxide and sulfurous and sulfuric acids from natural emissions of SO and H2S. Human activity can reduce the pH very significantly down to the range 2 to 4 in extreme cases, mainly caused by emissions of oxides of sulfur. Because atmospheric pollution and clouds travel over long distances, acid rain is not a local problem. The problem may manifest itself a long way from the source. Problems associated with acid rain include ... [Pg.551]

Historically, the sulfur oxides have long been known to have a deleterious effect on the atmosphere, and sulfuric acid mist and other sulfate particulate matter are well established as important sources of atmospheric contamination. However, the atmospheric chemistry is probably not as well understood as the gas-phase photoxidation reactions of the nitrogen oxides-hydrocarbon system. The pollutants form originally from the S02 emitted to the air. Just as mobile and stationary combustion sources emit some small quantities of N02 as well as NO, so do they emit some small quantities of S03 when they bum sulfur-containing fuels. Leighton [2] also discusses the oxidation of S02 in polluted atmospheres and an excellent review by Bulfalini [3] has appeared. This section draws heavily from these sources. [Pg.415]

Atmospheric and vacuum distillation units (Figures 4.3 and 4.4) are closed processes, and exposures are expected to be minimal. Both atmospheric distillation units and vacuum distillation units produce refinery fuel gas streams containing a mixture of light hydrocarbons, hydrogen sulfide, and ammonia. These streams are processed through gas treatment and sulfur recovery units to recover fuel gas and sulfur. Sulfur recovery creates emissions of ammonia, hydrogen sulfide, sulfur oxides, and nitrogen oxides. [Pg.93]

The wavelength-dispersive x-ray spectroscopy method (ASTM D6376) provides a rapid means of measuring metallic elements in coke and provides a guide for determining conformance to material specifications. A benefit of this method is that the sulfur content can also be used to evaluate potential formation of sulfur oxides, a source of atmospheric pollution. This test method specifically determines sodium, aluminum, silicon, sulfur, calcium, titanium, vanadium, manganese, iron, and nickel. [Pg.301]

Acid deposition acid rain a form of pollution depletion in which pollutants, such as nitrogen oxides and sulfur oxides, are transferred from the atmosphere to soil or water often referred to as atmospheric self-cleaning. The pollutants usually arise from the use of fossil fuels. [Pg.321]


See other pages where Sulfur oxides, atmospheric is mentioned: [Pg.297]    [Pg.527]    [Pg.297]    [Pg.527]    [Pg.284]    [Pg.1216]    [Pg.1216]    [Pg.372]    [Pg.385]    [Pg.267]    [Pg.115]    [Pg.466]    [Pg.56]    [Pg.552]    [Pg.395]    [Pg.214]    [Pg.2359]    [Pg.238]    [Pg.40]    [Pg.100]    [Pg.249]    [Pg.113]    [Pg.331]    [Pg.149]    [Pg.331]    [Pg.739]    [Pg.362]    [Pg.1485]    [Pg.1485]    [Pg.441]    [Pg.442]    [Pg.238]    [Pg.251]    [Pg.307]    [Pg.309]   


SEARCH



Atmosphere oxidation

Atmospheres oxidative

Atmospheric oxidants

Atmospheric oxidation

Atmospheric sulfur oxidation

Sulfur atmospheric

Sulfur oxide

Sulfur oxides oxidation

Sulfur oxidized

Sulfur oxidizer

Sulfurous oxide

© 2024 chempedia.info