Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur dienes

Water Nitrogen Oxygenates Sulfur Dienes and acetylenes... [Pg.557]

Feedstocks come mainly from catalytic cracking. The catalyst system is sensitive to contaminants such as dienes and acetylenes or polar compounds such as water, oxygenates, basic nitrogen, organic sulfur, and chlorinated compounds, which usually require upstream treatment. [Pg.376]

Liquid products from coking are very unstable (high diene contents), very olefinic, and highly contaminated by sulfur and nitrogen. The production of gas is considerable. [Pg.380]

Diallylsulfonium salts undergo intramolecular allylic rearrangement with strong bases to yield 1,5-dienes after reductive desulfurization. The straight-chain 1,5-dienes may be obtained by double sulfur extrusion with concomitant allylic rearrangements from diallyl disulfides. The first step is achieved with phosphines or phosphites, the second with benzyne. This procedure is especially suitable for the synthesis of acid sensitive olefins and has been used in oligoisoprene synthesis (G.M. Blackburn, 1969). [Pg.39]

Ethylene-propylene-diene rubber is polymerized from 60 parts ethylene, 40 parts propylene, and a small amount of nonconjugated diene. The nonconjugated diene permits sulfur vulcanization of the polymer instead of using peroxide. [Pg.1064]

Dithiophosphates. These compounds (13) are made by reaction of an alcohol with phosphoms pentasulfide, then neutralization of the dithiophosphoric acid with a metal oxide. Like xanthates, dithiophosphates contain no nitrogen and do not generate nitrosamines during vulcanization. Dithiophosphates find use as high temperature accelerators for the sulfur vulcanization of ethylene—propylene—diene (EPDM) terpolymers. [Pg.223]

Ethylene—Propylene Rubber. Ethylene and propjiene copolymerize to produce a wide range of elastomeric and thermoplastic products. Often a third monomer such dicyclopentadiene, hexadiene, or ethylene norbomene is incorporated at 2—12% into the polymer backbone and leads to the designation ethylene—propylene—diene monomer (EPDM) mbber (see Elastomers, synthetic-ethylene-propylene-diene rubber). The third monomer introduces sites of unsaturation that allow vulcanization by conventional sulfur cures. At high levels of third monomer it is possible to achieve cure rates that are equivalent to conventional mbbers such as SBR and PBD. Ethylene—propylene mbber (EPR) requires peroxide vulcanization. [Pg.232]

Peroxides. Peroxides are probably the most common materials used after sulfur because of their abiUty to cross-link a variety of diene- and non diene-containing elastomers, and their abiUty to produce thermally stable carbon—carbon cross-links. Carbon—carbon bonds are inherently stronger than the carbon—sulfur bonds developed with sulfur vulcanisation (21). [Pg.236]

The role of activators in the mechanism of vulcanization is as follows. The soluble zinc salt forms a complex with the accelerator and sulfur. This complex then reacts with a diene elastomer to form a mbber—sulfur—accelerator cross-link cursor while also Hberating the zinc ion. The final step involves completion of the sulfur cross-link to another mbber diene segment (18). [Pg.238]

Sulfur dioxide acts as a dienophile ia the Diels-Alder reaction with many dienes (253,254) and this reaction is conducted on a commercial scale with butadiene. The initial adduct, sulfolene [77-79-2] is hydrogenated to a solvent, sulfolane [126-33-0] which is useful for selective extraction of aromatic hydrocarbons from... [Pg.145]

Reaction of myrcene and sulfur dioxide under pressure produces myrcene sulfone. This adduct is stable under ordinary temperatures and provides a way to stabilize the conjugated diene system in order to hydrate it with sulfuric acid. The myrcene sulfone hydrate produced is pyrolyzed in the vapor phase in order to regenerate the diene system to produce myrcenol [543-39-5] (50). [Pg.417]

Ethylene—Propylene (Diene) Rubber. The age-resistant elastomers are based on polymer chains having a very low unsaturation, sufficient for sulfur vulcanization but low enough to reduce oxidative degradation. EPDM can be depicted by the following chain stmcture ... [Pg.469]

Double-Bond Cure Sites. The effectiveness of this kind of reactive site is obvious. It allows vulcanization with conventional organic accelerators and sulfur-based curing systems, besides vulcanization by peroxides. Fast and controllable vulcanizations are expected so double-bond cure sites represent a chance to avoid post-curing. Furthermore, blending with other diene elastomers, such as nitrile mbber [9003-18-3] is gready faciUtated. [Pg.476]

The first sulfur curable copolymer was prepared ia ethyl chloride usiag AlCl coinitiator and 1,3-butadiene as comonomer however, it was soon found that isoprene was a better diene comonomer and methyl chloride was a better polymerization diluent. With the advent of World War II, there was a critical need to produce synthetic elastomers in North America because the supply of natural mbber was drastically curtailed. This resulted in an enormous scientific and engineering effort that resulted in commercial production of butyl mbber in 1943. [Pg.480]

EPM can be vulcanised radically by means of peroxides. A small amount of built-in third diene monomer in EPDM permits conventional vulcanisa tion with sulfur at the pendent sites of unsaturation. [Pg.502]

The crystalliza tion resistance of vulcaniza tes can be measured by following hardness or compression set at low temperature over a period of time. The stress in a compression set test accelerates crystallization. Often the curve of compression set with time has an S shape, exhibiting a period of nucleation followed by rapid crystallization (Fig. 3). The mercaptan modified homopolymer, Du Pont Type W, is the fastest crystallizing, a sulfur modified homopolymer, GN, somewhat slower, and a sulfur modified low 2,3-dichlorobutadiene copolymer, GRT, and a mercaptan modified high dichlorobutadiene copolymer, WRT, are the slowest. The test is often mn near the temperature of maximum crystallization rate of —12° C (99). Crystallization is accelerated by polyester plasticizers and delayed with hydrocarbon oil plasticizers. Blending with hydrocarbon diene mbbers may retard crystallization and improve low temperature britdeness (100). [Pg.542]

The methiodide of 2,5-dihydrothiophene (239) is transformed in high yield to Z)-l-(methylthio)buta-l,3-diene (240) on treatment with alkali (81AJC1017). The thermal cheletropic extrusion of sulfur dioxide from both cis and trans isomers of 2,5-dihy-drothiophene 1,1-dioxides is highly stereospecific. For example, c/5-2,5-dimethyl-2,5-dihydrothiophene 1,1-dioxide (241) yields ( , )-hexa-2,4-diene (242) and sulfur dioxide (75JA3666, 75JA3673). [Pg.86]

The facile addition of sulfur dioxide to buta-1,3-dienes provides a useful source of... [Pg.117]

Thioketals are readily formed by acid-catalyzed reaction with ethane-dithiol. Selective thioketal formation is achieved at C-3 in the presence of a 6-ketone by carrying out the boron trifluoride catalyzed reaction in diluted medium. Selective protection of the 3-carbonyl group as a thioketal has been effected in high yield with A" -3,17-diketones, A" -3,20-diketones and A" -3,l 1,17-triones in acetic acid at room temperature in the presence of p-toluenesulfonic acid. In the case of thioketals the double bond remains in the 4,5-position. This result is attributed to the greater nucleophilicity of sulfur as compared to oxygen, which promotes closure of intermediate (66) to the protonated cyclic mercaptal (67) rather than elimination to the 3,5-diene [cf. ketal (70) via intermediates (68) and (69)]." " ... [Pg.392]

Oxidative reactions frequently represent a convenient preparative route to synthetic intermediates and end products This chapter includes oxidations of alkanes and cycloalkanes, alkenes and cycloalkenes, dienes, aromatic fluorocarbons, alcohols, phenols, ethers, aldehydes and ketones, carboxylic acids, nitrogen compounds, and organophosphorus, -sulfur, -selenium, -iodine, and -boron compounds... [Pg.321]

When treated with fuming sulfuric acid and then with water, decafluoro-cyclohepta-1,4-diene gives hexafluoro-l,5-dihydroxy-8-oxabicyclo(3 2 l)octan-3-one rather than octafluorocyclohepta-2,6-dienone, which is a probable intermediate [28] (equation 31)... [Pg.430]

The chalcogene heterocycles have been used as stable precursors for sulfur-said selenium-cantaining hetero-l,3-dienes in cycloaddition reactions 3//-l,2,4-Thiaselenazoles are a convenient source of 4,4-bis(trifluoromethyl)-l-thia-3-aza-buta-1,3-dienes, and 3//-diselenazoles are a convenient source of 4,4-bis(trifluoromethyl)-l-selena-3-azabuta-l,3-dienes as well as bis(tnfluoro-methyl)-substrtuted nitrile ylides [137]... [Pg.857]


See other pages where Sulfur dienes is mentioned: [Pg.7318]    [Pg.213]    [Pg.7318]    [Pg.213]    [Pg.254]    [Pg.236]    [Pg.236]    [Pg.236]    [Pg.240]    [Pg.246]    [Pg.286]    [Pg.438]    [Pg.238]    [Pg.296]    [Pg.184]    [Pg.469]    [Pg.502]    [Pg.503]    [Pg.544]    [Pg.41]    [Pg.85]    [Pg.117]    [Pg.141]    [Pg.640]    [Pg.238]    [Pg.455]    [Pg.328]    [Pg.334]    [Pg.182]   


SEARCH



Bridged Sulfides by Addition of Sulfur Dichloride to Dienes

Cheletropic reactions diene-sulfur dioxide

Diene rubbers sulfur vulcanisation

Dienes reaction with sulfur dioxide

Dienes sulfur-substituted

Ethylene-propylene-diene , sulfur

Sulfur dichloride Diels-Alder additions to dienes

Sulfur dichloride reactions with dienes

Sulfur dioxide-diene copolymers

Synthesis of Sulfur-Substituted 1,3-Dienes

© 2024 chempedia.info