Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur compounds sodium hydride

Dimethylsulfoxide Acyl and aryl halides, boron compounds, bromomethane, nitrogen dioxide, magnesium perchlorate, periodic acid, silver difluoride, sodium hydride, sulfur trioxide... [Pg.1208]

Of the several syntheses available for the phenothiazine ring system, perhaps the simplest is the sulfuration reaction. This consists of treating the corresponding diphenylamine with a mixture of sulfur and iodine to afford directly the desired heterocycle. Since the proton on the nitrogen of the resultant molecule is but weakly acidic, strong bases are required to form the corresponding anion in order to carry out subsequent alkylation reactions. In practice such diverse bases as ethylmagnesium bromide, sodium amide, and sodium hydride have all been used. Alkylation with (chloroethyl)diethylamine affords diethazine (1), a compound that exhibits both antihista-minic and antiParkinsonian activity. Substitution of w-(2-chloroethyl)pyrrolidine in this sequence leads to pyrathiazine (2), an antihistamine of moderate potency. [Pg.373]

One Te-C bond in a diorgano tellurium can be cleaved by alkali metals, organic lithium compounds, sodium hydroxide, lithium aluminum hydride, sodium borohydride, Grignard reagents, tributyltin hydride, sulfuric acid, sodium sulfide, sulfuryl chloride, hydrogen bromide, bromine, or iodine. The Te-C bond can also be broken thermally or through photostimulation. [Pg.472]

These two milestone syntheses were soon followed by others, and activity in this field continued to be driven by interest in the biologically active esters of cephalotaxine. In 1986, Hanaoka et al. (27) reported the stereoselective synthesis of ( )-cephalotaxine and its analog, as shown in Scheme 4. The amide acid 52, prepared by condensation of ethyl prolinate with 3,4-dimethoxyphenylacetyl chloride, followed by hydrolysis of the ethyl ester, was cyclized to the pyrrolobenzazepine 53 by treatment with polyphos-phoric acid, followed by selective O-alkylation with 2,3-dichloropropene (54) in the presence of sodium hydride. The resulting enol ether 55 underwent Claisen rearrangement on heating to provide C-allylated compound 56, whose reduction with sodium borohydride yielded the alcohol, which on treatment with 90% sulfuric acid underwent cationic cyclization to give the tetracyclic ketone 57. Presumably, this sequence represents the intramolecular version of the Wichterle reaction. On treatment with boron tribromide, ketone 57 afforded the free catechol, which was reacted with dibromometh-ane and potassium fluoride to give methylenedioxy derivative 58, suited for the final transformations to cephalotaxine. Oxidation of ketone 58... [Pg.210]

The synthesis of the sulfur-containing intermediate 15 for the preparation of peptides XVI and XVII (77) is shown in Scheme 6. Synthetic intermediate 14 was derived from compound 6 by the reduction of the ester and ring closure after treatment with sodium hydride in dimethylforamide. The primary alcohol in compound 14 was then converted to a leaving group which was displaced by the desired thiol to give the intermediate 15. Oxidation of the resulting sulfide then afforded the corresponding sulfone for incorporation into the desired peptide XVI. [Pg.167]

Between 400 and 430° the hydrogen pressure reaches 1 atm. The melting point (under pressure) is above 800°. Sodium hydride dissolves in fused sodium hydroxide and in fused alkali halides. It is insoluble in liquid ammonia. Water decomposes it immediately and completely to hydroxyl ion and hydrogen. Although sodium hydride is said to be stable in dry oxygen to 230°, traces of elemental sodium present may cause its ignition at lower temperatures. Copper, lead, and iron oxides are reduced by the compound to the free metals. Sulfur dioxide, carbon monoxide, and the halogens are reduced by the hydride to dithionite, formate, and halide ions, respectively. [Pg.13]

BENSULFOID (7704-34-9) Combustible solid (flash point 405°F/207°C). Finely divided dry materia forms explosive mixture with air. The vapor reacts violently with lithium carbide. Reacts violently with many substances, including strong oxidizers, aluminum powders, boron, bromine pentafluoride, bromine trifluoride, calcium hypochlorite, carbides, cesium, chlorates, chlorine dioxide, chlorine trifluoride, chromic acid, chromyl chloride, dichlorine oxide, diethylzinc, fluorine, halogen compounds, hexalithium disilicide, lampblack, lead chlorite, lead dioxide, lithium, powdered nickel, nickel catalysis, red phosphorus, phosphorus trioxide, potassium, potassium chlorite, potassium iodate, potassium peroxoferrate, rubidium acetylide, ruthenium tetraoxide, sodium, sodium chlorite, sodium peroxide, tin, uranium, zinc, zinc(II) nitrate, hexahydrate. Forms heat-, friction-, impact-, and shock-sensitive explosive or pyrophoric mixtures with ammonia, ammonium nitrate, barium bromate, bromates, calcium carbide, charcoal, hydrocarbons, iodates, iodine pentafluoride, iodine penloxide, iron, lead chromate, mercurous oxide, mercury nitrate, mercury oxide, nitryl fluoride, nitrogen dioxide, inorganic perchlorates, potassium bromate, potassium nitride, potassium perchlorate, silver nitrate, sodium hydride, sulfur dichloride. Incompatible with barium carbide, calcium, calcium carbide, calcium phosphide, chromates, chromic acid, chromic... [Pg.156]

IODINE (7553-56-2) A powerful oxidizer. Material or vapors react violently with reducing agents, combustible materials, alkali metals, acetylene, acetaldehyde, antimony, boron, bromine pentafluoride, bromine trifluoride, calcium hydride, cesium, cesium oxide, chlorine trifluoride, copper hydride, dipropylmercury, fluoride, francium, lithium, metal acetylides, metal carbides, nickel monoxide, nitryl fluoride, perchloryl perchlorate, polyacetylene, powdered metals, rubidium, phosphorus, sodium, sodium phosphinate, sulfur, sulfur trioxide, tetraamine, trioxygen difluoride. Forms heat- or shock-sensitive compounds with ammonia, silver azide, potassium, sodium, oxygen difluoride. Incompatible with aluminum-titanium alloy, barium acetylide, ethanol, formamide, halogens, mercmic oxide, mercurous chloride, oxygen, pyridine, pyrogallic acid, salicylic acid sodium hydride, sodium salicylate, sulfides, and other materials. [Pg.658]


See other pages where Sulfur compounds sodium hydride is mentioned: [Pg.96]    [Pg.420]    [Pg.80]    [Pg.1477]    [Pg.439]    [Pg.255]    [Pg.721]    [Pg.87]    [Pg.144]    [Pg.228]    [Pg.64]    [Pg.549]    [Pg.670]    [Pg.67]    [Pg.102]    [Pg.364]    [Pg.21]    [Pg.243]    [Pg.352]    [Pg.474]    [Pg.587]    [Pg.665]    [Pg.668]    [Pg.740]    [Pg.1006]    [Pg.148]    [Pg.196]    [Pg.277]    [Pg.331]    [Pg.346]    [Pg.348]    [Pg.554]    [Pg.657]    [Pg.658]    [Pg.682]    [Pg.722]    [Pg.722]    [Pg.724]    [Pg.724]    [Pg.731]    [Pg.818]   
See also in sourсe #XX -- [ Pg.444 ]




SEARCH



Hydride compounds

Sodium compounds

Sodium compounds hydride

Sodium hydride

Sodium sulfur

Sulfur hydride

© 2024 chempedia.info