Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfonic acids with aromatic rings

TBPA is prepared in high yield by the bromination of phthalic anhydride in 60% oleum (51). The use of oleum as the bromination solvent results in some sulfonation of the aromatic ring (52). Sulfonated material is removed by hydrolyzing the anhydride with dilute NaOH, filtering and acidifying with dilute HCl. The precipitated acid is washed several times with hot water and reconverted to the anhydride by heating at 150°C for several hours. [Pg.470]

Sulfonation of the aromatic ring of l, 2, 2 -trifluorostyrene below 0 C does not give satisfactory yields with chlorosulfonic acid or a sulfur trioxide-dioxane complex Tar forms on heating In contrast, under similar conditions ipso substitution IS facile at the position of a trialkylsilyl or -stannyl group Thus, 4-trimethyl-silyl-T 2, 2 D-trifluorostyrene affords the corresponding trimethylsilyl sulfonate [20] (equation 9)... [Pg.406]

The sulfonation of an aromatic ring with SO3 and H2S04 is reversible. That is, heating benzenesulfonic acid with H2SO4 yields benzene. Show the mechanism of the desulfonation read ion. What is the electrophile ... [Pg.592]

Two of the reactions that are used in the industrial preparation of detergents are electrophilic aromatic substitution reactions. First, a large hydrocarbon group is attached to a benzene ring by a Friedel-Crafts alkylation reaction employing tetrapropene as the source of the carbocation electrophile. The resulting alkylbenzene is then sulfonated by reaction with sulfuric acid. Deprotonation of the sulfonic acid with sodium hydroxide produces the detergent. [Pg.694]

A type of organic compound in which at least one hydroxyl group is bound directly to one of the carbon atoms of an aromatic ring. Phenols do not show the behavior typical of alcohols. In particular they are more acidic because of the electron-withdrawing effect of the aromatic ring. The preparation of phenol itself is by fusing the sodium salt of the sulfonic acid with sodium hydroxide ... [Pg.210]

From the point of view of catalysis the interesting feature of these materials is the possibility of sulfonation of the aromatic rings, producing Brdnsted acidity [67,68], which is active for reactions such as isobutanc/butene alkylation, Fricdel-Crafts alkylation, alcohol dehydration, methanol conversion to gasoline, hydrolysis of esters, and so on. Some drawbacks associated with these materials are diffusional restrictions for bulkier molecules, and reaction and regeneration temperature limitations. [Pg.10]

PoIysuIfonyIa.tlon, The polysulfonylation route to aromatic sulfone polymers was developed independendy by Minnesota Mining and Manufacturing (3M) and by Imperial Chemical Industries (ICI) at about the same time (81). In the polymerisation step, sulfone links are formed by reaction of an aromatic sulfonyl chloride with a second aromatic ring. The reaction is similar to the Friedel-Crafts acylation reaction. The key to development of sulfonylation as a polymerisation process was the discovery that, unlike the acylation reaction which requires equimolar amounts of aluminum chloride or other strong Lewis acids, sulfonylation can be accompHshed with only catalytic amounts of certain haUdes, eg, FeCl, SbCl, and InCl. The reaction is a typical electrophilic substitution by an arylsulfonium cation (eq. 13). [Pg.332]

Sulfonation. Aniline reacts with sulfuric acid at high temperatures to form -aminoben2enesulfonic acid (sulfanilic acid [121 -57-3]). The initial product, aniline sulfate, rearranges to the ring-substituted sulfonic acid (40). If the para position is blocked, the (9-aminoben2enesulfonic acid derivative is isolated. Aminosulfonic acids of high purity have been prepared by sulfonating a mixture of the aromatic amine and sulfolane with sulfuric acid at 180-190°C (41). [Pg.231]

Miscellaneous Reactions. Aromatic sulfonic acid derivatives can be nitrated using nitric acid [52583-42-3] HNO, ia H2SO4 (19). Sultones may be treated with hydrazine derivatives to give the corresponding ring-opened sulfonic acid (20). [Pg.97]

SuIfona.tlon, Sulfonation is a common reaction with dialkyl sulfates, either by slow decomposition on heating with the release of SO or by attack at the sulfur end of the O—S bond (63). Reaction products are usually the dimethyl ether, methanol, sulfonic acid, and methyl sulfonates, corresponding to both routes. Reactive aromatics are commonly those with higher reactivity to electrophilic substitution at temperatures > 100° C. Tn phenylamine, diphenylmethylamine, anisole, and diphenyl ether exhibit ring sulfonation at 150—160°C, 140°C, 155—160°C, and 180—190°C, respectively, but diphenyl ketone and benzyl methyl ether do not react up to 190°C. Diphenyl amine methylates and then sulfonates. Catalysis of sulfonation of anthraquinone by dimethyl sulfate occurs with thaHium(III) oxide or mercury(II) oxide at 170°C. Alkyl interchange also gives sulfation. [Pg.200]

A Methylanthrapyridone and Its Derivatives. 6-Bromo-3-methylanthrapyridone [81-85-6] (75) is an important iatermediate for manufacturiag dyes soluble ia organic solvents. These solvent dyes are prepared by replacing the bromine atom with various kiads of aromatic amines. 6-Bromo-3-methylanthrapyridone is prepared from 1-methyl amino-4-bromoanthra quin one (43) by acetylation with acetic anhydride followed by ring closure ia alkaU. The startiag material of this route is anthraquiaoae-l-sulfonic acid (16). [Pg.317]

An aiyl methane- or toluenesulfonate ester is stable to reduction with lithium aluminum hydride, to the acidic conditions used for nitration of an aromatic ring (HNO3/HOAC), and to the high temperatures (200-250°) of an Ullman reaction. Aiyl sulfonate esters, formed by reaction of a phenol with a sulfonyl chloride in pyridine or aqueous sodium hydroxide, are cleaved by warming in aqueous sodium hydroxide. ... [Pg.168]


See other pages where Sulfonic acids with aromatic rings is mentioned: [Pg.130]    [Pg.286]    [Pg.232]    [Pg.89]    [Pg.74]    [Pg.467]    [Pg.85]    [Pg.92]    [Pg.599]    [Pg.242]    [Pg.313]    [Pg.255]    [Pg.93]    [Pg.85]    [Pg.354]    [Pg.329]    [Pg.348]    [Pg.61]    [Pg.73]    [Pg.257]    [Pg.373]    [Pg.67]    [Pg.67]    [Pg.70]    [Pg.310]    [Pg.267]    [Pg.28]    [Pg.427]    [Pg.38]    [Pg.61]    [Pg.138]    [Pg.552]   
See also in sourсe #XX -- [ Pg.530 ]




SEARCH



Aromatic rings sulfonation

Aromatic sulfonation

Aromatic sulfonations

Aromatic sulfonic acids

Aromatics Sulfonic acids

Aromatics sulfonation

Sulfonate aromatic

Sulfonated Aromatic

Sulfonic aromatic

With aromatic rings

© 2024 chempedia.info