Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfonic acids toluenesulfonic acid

ButylatedPhenols and Cresols. Butylated phenols and cresols, used primarily as oxidation inhibitors and chain terrninators, are manufactured by direct alkylation of the phenol using a wide variety of conditions and acid catalysts, including sulfuric acid, -toluenesulfonic acid, and sulfonic acid ion-exchange resins (110,111). By use of a small amount of catalyst and short residence times, the first-formed, ortho-alkylated products can be made to predominate. Eor the preparation of the 2,6-substituted products, aluminum phenoxides generated in situ from the phenol being alkylated are used as catalyst. Reaction conditions are controlled to minimise formation of the thermodynamically favored 4-substituted products (see Alkylphenols). The most commonly used is -/ fZ-butylphenol [98-54-4] for manufacture of phenoHc resins. The tert-huty group leaves only two rather than three active sites for condensation with formaldehyde and thus modifies the characteristics of the resin. [Pg.372]

Esterification. Citric acid is easily esterified with many alcohols under a2eotropic conditions in the presence of a catalyst such as sulfuric acid, / -toluenesulfonic acid, or sulfonic acid-type ion-exchange resin. Alcohols boiling above 150°C esterify citric acid without a catalyst (5—8). [Pg.180]

Catalysts used are usually acids such as sulfuric acid, -toluenesulfonic acid, sulfonic acid ion-exchange resins, and others. The water from the reaction of the citric acid and the alcohol is continuously removed as the azeotrope until no more water is formed. At this point, the reaction is usually complete and the solvent and any excess alcohol is distilled off under mild vacuum. The catalyst is neutralized using carbonate or sodium hydroxide, leaving a cmde product. If a pure product is desired, the ester can be distilled under high vacuum. [Pg.186]

Dehydration Alumina (see also Dihydropyrane, preparation). Boric acid. Boron triSuoride. N-Bromoacetamide-Pyridine-SOj. Dicyclohexylcarbodiimide. Diketene. Dimethylform-amide-Thionyl chloride. Dimethyl sulfoxide. Ethylene chlorophosphite. Florisil. Girard s reagent. Hydrobromic acid. Iodine. Mesyl chloride-Sulfur dioxide. Methyl chlorosulfite. Methylketene diethylacetal. Naphthalene-d-sulfonic acid. Oxalic acid. Phenyl isocyanate. Phosgene. Phosphorus pentoxide. Phosphoryl chloride. Phthalic anhydride. Potassium bisulfate. Pyridine. Thionyi chloride. Thoria. p-Toluenesulfonic acid. p-Toluenesulfonyl chloride. Triphenylphosphine dibromide. [Pg.1387]

Wftco SCS 40. See Sodium cumenesulfonate Witco STS 40. See Sodium toluenesulfonate Witco SXS 40. See Sodium xylenesulfonate Witco TX Acid. See p-Toluene sulfonic acid Witco Acid B. See Dodecylbenzenesulfonic acid... [Pg.4715]

Sulfuric acid, Toluenesulfonic acid, Phosphonic acid. Hydrochloric acid. Ferric sulfate hydrate. Methyl thiosulphate, Hydroiodic acid. Aluminium trichloride, Niobic acid Alkyl benzene sulfonic acid... [Pg.27]

Direct, acid catalyzed esterification of acryhc acid is the main route for the manufacture of higher alkyl esters. The most important higher alkyl acrylate is 2-ethyIhexyi acrylate prepared from the available 0x0 alcohol 2-ethyl-1-hexanol (see Alcohols, higher aliphatic). The most common catalysts are sulfuric or toluenesulfonic acid and sulfonic acid functional cation-exchange resins. Solvents are used as entraining agents for the removal of water of reaction. The product is washed with base to remove unreacted acryhc acid and catalyst and then purified by distillation. The esters are obtained in 80—90% yield and in exceUent purity. [Pg.156]

Methylphenol. T -Cresol is produced synthetically from toluene. Toluene is sulfonated to yield T i ra-toluenesulfonic acid, which is then converted to 4-methylphenol via the caustic fusion route. A minor amount of 4-methylphenol is also derived from petroleum cmde and coal tars. 4-Methylphenol [106-44-5] is available in 55-gal dmms (208-L) and in bulk quantities as a molten material. [Pg.67]

Toluenesulfonic Acid. Toluene reacts readily with fuming sulfuric acid to yield toluene—sulfonic acid. By proper control of conditions, /)i7n7-toluenesulfonic acid is obtained. The primary use is for conversion, by fusion with NaOH, to i ra-cresol. The resulting high purity i7n -cresol is then alkylated with isobutylene to produce 2 (i-dii-tert-huty -para-cmso (BHT), which is used as an antioxidant in foods, gasoline, and mbber. Mixed cresols can be obtained by alkylation of phenol and by isolation from certain petroleum and coal-tar process streams. [Pg.192]

The toluenesulfonic acid prepared as an iatermediate ia the preparation ofpara-cmso also has a modest use as a catalyst for various esterifications and condensations. Sodium salts of the toluenesulfonic acids are also used ia surfactant formulations. Annual use of toluene for sulfonation is ca 100,000-150,000 t (30-45 x 10 gal). [Pg.192]

The starting materials of the aldehyde method may be sulfonated. For example. Cl Acid Blue 9 [2650-18-2] Cl Food Blue 2 (Cl 42090), is manufactured by condensing a-(A/-ethylanilino)-y -toluenesulfonic acid with o-sulfobenzaldehyde. The leuco base is oxidized with sodium dichromate to the dye, which is usually isolated as the ammonium salt. In this case, the removal of the excess amine is not necessary. However, this color caimot be used in the food sector because separation of the chromium compounds from the dye is difficult. An alternative method which gives food-grade Cl Acid Blue 9 (14) and dispenses with the use of sodium dichromate employs oxidative electrolysis of the leuco base (49). [Pg.271]

Fig. 5. Direct red dyes, (a) Direct Red 81 described ia text (68) (b) Direct Red 2 (o-toLidiae coupled to two moles of naphthionic acid) (69) (c) Direct Red 23 (aniline coupled to 6,6 -ureylenebis-l-naplitliol-3-sulfonic acid with a second coupling with j aminoacetanilide) (70) and Direct Red 80 (2 mol 6-amino-3,4 -azobenzenedisulfonic acid coupled twice to 6,6 -ureylenebis-l-naphthol-3-sulfonic acid) (73). Direct Red 24 (4-aniino-y -toluenesulfonic acid coupled under acidic conditions to 6,6 -ureylenebis-l-naphthol-3-sulfonic acid followed by an alkaline coupling of o-anisidine) (71) (d) Direct Red 72 (Broenner s acid, ie, 6-artiino-2-naphthalenesulfonic acid coupled under acidic conditions to 6,6 -ureylenebis-l-naphthol-3-sulfonic acid followed by an... Fig. 5. Direct red dyes, (a) Direct Red 81 described ia text (68) (b) Direct Red 2 (o-toLidiae coupled to two moles of naphthionic acid) (69) (c) Direct Red 23 (aniline coupled to 6,6 -ureylenebis-l-naplitliol-3-sulfonic acid with a second coupling with j aminoacetanilide) (70) and Direct Red 80 (2 mol 6-amino-3,4 -azobenzenedisulfonic acid coupled twice to 6,6 -ureylenebis-l-naphthol-3-sulfonic acid) (73). Direct Red 24 (4-aniino-y -toluenesulfonic acid coupled under acidic conditions to 6,6 -ureylenebis-l-naphthol-3-sulfonic acid followed by an alkaline coupling of o-anisidine) (71) (d) Direct Red 72 (Broenner s acid, ie, 6-artiino-2-naphthalenesulfonic acid coupled under acidic conditions to 6,6 -ureylenebis-l-naphthol-3-sulfonic acid followed by an...
Toners derived from 6-chlorometanilic acid [88-43-7] 6-amiao-4-chloro-y -toluene-sulfonic acid [88-51-7] and 6-arriino-y -toluenesulfonic acid [88-44-8] have improved fastness properties and find use in paints, inks, and plastics. [Pg.455]

The sulfonated resin is a close analogue of -toluenesulfonic acid in terms of stmcture and catalyst performance. In the presence of excess water, the SO H groups are dissociated, and specific acid catalysis takes place in the swelled resin just as it takes place in an aqueous solution. When the catalyst is used with weakly polar reactants or with concentrations of polar reactants that are too low to cause dissociation of the acid groups, general acid catalysis prevails and water is a strong reaction inhibitor (63). [Pg.175]

In laboratory preparations, sulfuric acid and hydrochloric acid have classically been used as esterification catalysts. However, formation of alkyl chlorides or dehydration, isomerization, or polymerization side reactions may result. Sulfonic acids, such as benzenesulfonic acid, toluenesulfonic acid, or methanesulfonic acid, are widely used in plant operations because of their less corrosive nature. Phosphoric acid is sometimes employed, but it leads to rather slow reactions. Soluble or supported metal salts minimize side reactions but usually require higher temperatures than strong acids. [Pg.376]

Sulfonic acids such as methanesulfonic acid and p-toluenesulfonic acid are strong acids, comparable in acidity with sulfuric acid. [Pg.351]

The following section describes as an example the sulfonation of toluene to />-toluenesulfonic acid. Concerning the formation of byproducts, see page 81. Figure 24 gives an overview of the process [162]. The maunufacture of p-toluenesulfonic acid follows continuously by the conversion of alkylbenzene with 96-100% sulfuric acid in the mixing vessel Rl. The formed water is re-... [Pg.83]

With carboxylic acids there was no activation to carboxylic acid imidazolides observed. Reaction with p-toluenesulfonic acid in boiling tetrahydrofuran did not yield the />-toluenesulfonic acid imidazolide, but rather the double p-toluene sulfonate, from which A -sulfonyldiimidazole can be released again quantitatively with imidazole or aniline. Only from the melt of water-free p-toluenesulfonic acid and AyV -sulfonyldiimidazole at 90 °C p-toluenesulfonic imidazolide (m.p. 75.5-77 °C 87% yield) could be obtained1201 (see also Section 10.1.1). [Pg.31]

Caution is advised [1] to prevent explosions when using an analytical method involving sequential addition of acetic acid, aqueous 4-toluenesulfonic acid and acetic anhydride to serum [2], It is difficult to see why this should happen, unless the anhydride were all added before the sulfonic acid solution. [Pg.523]

Cyclic five-membered sulfates and sultones are known to undergo hydrolysis from 105 to 107 faster than their acyclic analogs. Thus, for example, catechol sulfate [54] undergoes alkaline hydrolysis 2 x 107 faster than diphenyl sulfate (Kaiser et al., 1965), and l-naphthol-8-sulfonic acid sultone [55] hydrolyzes 5 x 105 faster than phenyl cr-toluenesulfonate (Kaiser et al., 1967). In contrast... [Pg.135]

Shown in Table 1 are the polymerization results under various conditions. Three kinds of sulfonic acids, 10-camphorsulfonic acid (CSA), p-toluenesulfonic acid (TsOH), and trifluoromethanesulfonic acid (TfOH) were used as a catalyst for the polymerization of 1 to give aminopolysac-charide 2. The highest molecular weight was 4,900 [degree of polymerization (DP) ca. 13] under the conditions of entry 3. [Pg.259]

The water-soluble palladium complex prepared from [Pd(MeCN)4](Bp4)2 and tetrasulfonated DPPP (34, n=3, m=0) catalyzed the copolymerization of CO and ethene in neutral aqueous solutions with much lower activity [21 g copolymer (g Pd) h ] [53] than the organosoluble analogue in methanol. Addition of strong Brpnsted acids with weakly coordinating anions substantially accelerated the reaction, and with a catalyst obtained from the same ligand and from [Pd(OTs)2(MeCN)2] but in the presence of p-toluenesulfonic acid (TsOH) 4 kg copolymer was produced per g Pd in one hour [54-56] (Scheme 7.16). Other tetrasulfonated diphosphines (34, n=2, 4 or 5, m=0) were also tried in place of the DPPP derivative, but only the sulfonated DPPB (n=4) gave a catalyst with considerably higher activity [56], Albeit with lower productivity, these Pd-complexes also catalyze the CO/ethene/propene terpolymerization. [Pg.206]


See other pages where Sulfonic acids toluenesulfonic acid is mentioned: [Pg.283]    [Pg.283]    [Pg.390]    [Pg.489]    [Pg.175]    [Pg.313]    [Pg.125]    [Pg.308]    [Pg.1145]    [Pg.563]    [Pg.28]    [Pg.140]    [Pg.81]    [Pg.84]    [Pg.85]    [Pg.295]    [Pg.78]    [Pg.57]    [Pg.179]    [Pg.19]    [Pg.37]    [Pg.85]    [Pg.723]    [Pg.111]    [Pg.91]    [Pg.121]   


SEARCH



Toluenesulfonates

Toluenesulfonic acid

© 2024 chempedia.info