Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Succinic anhydride reactions

Chain Extension of -U-Polystyrene Hiols. A two-stage chain extension of the. -kJ -polystyrene diols was accomplished by carboxylation of the diols with succinic anhydride followed by chain extension with a diepoxide. The succinic anhydride reaction was carried out 120-130°C under nitrogen. The reaction was monitored bj changes in the carbonyl bands at 1715 and 1740 cm in the infrared spectra of the reaction mixtures. The resulting dicarboxylic acid polymers were chain-extended in bulk at 130°C for 9 hours with Sow s HER diepoxide, equivalent weight =171, using bis( 3,5-diisopropylsalicylato)Cr (III) as the catalyst. [Pg.428]

It is well known that maleic anhydride 46a is capable of undergoing three types of reaction condensation with dienes with the participation of the double bond and the formation of a Diels-Alder adduct addition at the double bond with the formation of a derivative of succinic anhydride reaction of one of the carbonyl groups followed by opening of the anhydride system (Schonberg and Mustafa 1943 Flett and Gardner 1952). Compounds 47-50 could be formed in the reaction of maleic anhydride with 2,3-dimethylquinoxaline 51a (Fig. 3.3). [Pg.142]

In the following preparation, this reaction is exemplified by the union of anthracene with maleic anhydride, to form 9,io-dihydroanthracene-9,io-e do-a -succinic anhydride note that as a result of this reaction both the outer rings of the anthracene system become truly aromatic in character. [Pg.292]

Method B. In a 500 ml. round-bottomed flask, provided with a reflux condenser protected by a cotton wool (or calcium chloride) drying tube, place 59 g. of succinic acid and 102 g. (94-5 ml.) of redistilled acetic anhydride. Reflux the mixture gently on a water bath with occasional shaking until a clear solution is obtamed ca. 1 hour), and then for a further hour to ensure the completeness of the reaction. Remove the complete assembly from the water bath, allow it to cool (observe the formation of crystals), and finally cool in ice. Collect the succinic anhydride as in Method A. The yield is 45 g., m.p. 119-120°. [Pg.375]

A further example is given below illustrating the use of a dibasic anhydride (succinic anhydride) the succinoylation reaction is a valuable one since it leads to aroyl carboxylic acids and ultimately to polynuclear hydrocarbons. This general scheme of synthesis of substituted hydrocarbons through the use of succinic anhydride is sometimes called the Haworth reaction. Thus a-tetralone (see below) may be reduced by the Clemmensen method to tetralin (tetrahydronaphthalene) and the latter converted into naphthalene either catal3d.ically or by means of sulphur or selenium (compare Section, VI,33). [Pg.726]

It will be easy to put in bond a because it is para to the MeO group, but bond b might be difficult Tire strategy is to put in bond a first and use an intramolecular reaction to force bond b to go in the right place. Succinic anhydride is a convenient four carbon electrophile ... [Pg.107]

Typical reaction conditions are 150 to 300°C and up to 2 MPa pressure. Polyalkenyl succinic anhydrides are prepared under these conditions by the reaction of polyalkenes in a nonaqueous dispersion of maleic anhydride, mineral oil, and surfactant (33). [Pg.449]

Heat. When heated, succinic acid loses water and forms an internal anhydride with a stable ring stmcture. Dehydration starts at 170°C and becomes rapid at 190—210°C (25). Further heating of succinic anhydride causes decarboxylation and the formation of the dilactone of gamma ketopimelic acid (26) (eq. 1). The same reaction takes place at lower temperatures in the presence of alkaU. [Pg.535]

At higher temperatures the presence of alkaU causes an explosive reaction that does not stop at the bimolecular stage. Precautions must therefore be taken to exclude traces of alkaU when handling succinic anhydride. [Pg.535]

Condensation with Aldehydes and Ketones. Succinic anhydride and succinic esters in the presence of different catalysts react in the gas phase with formaldehyde to give citraconic acid or anhydride and itaconic acid (94—96). Dialkyl acyl succinates are obtained by reaction of dialkyl succinates with C 4 aldehydes over peroxide catalysts (97). [Pg.535]

Friedel-Grafts Reactions. In the presence of Friedel-Crafts catalysts, succinic anhydride reacts with alkyl benzenes to form alkylben2oylpropionic acids (103), eg, the reaction with iadane gives a 97% yield of 4-oxo-(4,5-iQdanyl)butyric acid (eq. 6). [Pg.536]

Reactions with Sulfur Compounds. Thiosuccinic anhydride [3194-60-3] is obtained by reaction of diethyl or diphenyl succinate [621-14-7] with potassium hydrogen sulfide followed by acidification (eq. 10). Thiosuccinic anhydride is also obtained from succinic anhydride and hydrogen sulfide under pressure (121). [Pg.537]

Succinic anhydride is manufactured by catalytic hydrogenation of maleic anhydride [108-31-6]. In the most widely used commercial process this reaction is performed in the Hquid phase, at temperatures of 120—180°C and at moderate pressures, in the range of 500—4000 kPa (72—580 psi). Catalysts mentioned in the patent Hterature include nickel (124), Raney nickel (125,126), palladium on different carriers (127,128), and palladium complexes (129). The hydrogenation of the double bond is exothermic Ai/ = —133.89 kJ/mol (—32 kcal/mol) (130). [Pg.537]

Friedel-Crafts Acylation. The Friedel-Crafts acylation procedure is the most important method for preparing aromatic ketones and thein derivatives. Acetyl chloride (acetic anhydride) reacts with benzene ia the presence of aluminum chloride or acid catalysts to produce acetophenone [98-86-2], CgHgO (1-phenylethanone). Benzene can also be condensed with dicarboxyHc acid anhydrides to yield benzoyl derivatives of carboxyHc acids. These benzoyl derivatives are often used for constmcting polycycHc molecules (Haworth reaction). For example, benzene reacts with succinic anhydride ia the presence of aluminum chloride to produce P-benzoylpropionic acid [2051-95-8] which is converted iato a-tetralone [529-34-0] (30). [Pg.40]

Cellulose esters of aromatic acids, aUphatic acids containing more than four carbon atoms and aUphatic diacids are difficult and expensive to prepare because of the poor reactivity of the corresponding anhydrides with cellulose Httle commercial interest has been shown in these esters. Of notable exception, however, is the recent interest in the mixed esters of cellulose succinates, prepared by the sodium acetate catalyzed reaction of cellulose with succinic anhydride. The additional expense incurred in manufacturing succinate esters is compensated by the improved film properties observed in waterborne coatings (5). [Pg.249]

Alkyl-substituted succiiiimides are prepared by reaction of alkyleneamines such as TETA or TEPA with the corresponding alkyl substituted succinic anhydride (43). [Pg.43]

The diacids are characterized by two carboxyHc acid groups attached to a linear or branched hydrocarbon chain. AUphatic, linear dicarboxyhc acids of the general formula HOOC(CH2) COOH, and branched dicarboxyhc acids are the subject of this article. The more common aUphatic diacids (oxaUc, malonic, succinic, and adipic) as weU as the common unsaturated diacids (maleic acid, fumaric acid), the dimer acids (qv), and the aromatic diacids (phthaUc acids) are not discussed here (see Adipic acid Maleic anhydride, maleic acid, and fumaric acid Malonic acid and derivatives Oxalic acid Phthalic acid and OTHERBENZENE-POLYCARBOXYLIC ACIDS SucciNic ACID AND SUCCINIC ANHYDRIDE). The bihinctionahty of the diacids makes them versatile materials, ideally suited for a variety of condensation polymerization reactions. Several diacids are commercially important chemicals that are produced in multimillion kg quantities and find appHcation in a myriad of uses. [Pg.60]

With the saturated analogs, i.e. succinic anhydride and its derivatives, pyridazines are formed in only a few cases. The reaction has been applied to the preparation of perhydro-pyridazines and their 3,6-diones (68MI21200, 70JOC1468). For the synthesis of 4,5-dihalopyridazinones, /3-formylacrylic acids, for example mucochloric acid, are useful syn-thons (Scheme 80). [Pg.46]

Potential 2,5-dihydroxy compounds (185) exist in the dicarbonyl forms (186). Succinic anhydride (186 Z = O) on silylation is converted into 2,5-bis(trimethylsilyloxy)furan (187) the latter compound readily participates in Diels-Alder addition reactions (80TL3423). Reaction of thiosuccinic anhydride (186 Z = S) with the triphenylphosphorane Et02CH=PPh3 gives a product which exists in the aromatic form (188) (75LA1967). [Pg.77]

An interesting application of this reaction was the use of macro-molecular anhydrides, namely, styrene-maleic anhydride or vinyl acetate-maleic anhydride copolymers in the presence of perchloric acid as catalyst, these copolymers acylate mesityl oxide or d rpnone to macromolecular pyrylium salts which, with aryl substituents, are fluorescent.No crystalline products could be obtained from succinic anhydride because of the solubility and ease of decarboxylation. [Pg.285]

With a mixed anhydride two different arylketones may be formed. Reaction of a cyclic anhydride of a dicarboxylic acid, e.g. succinic anhydride, leads to formation of an arylketo acid. ... [Pg.118]

To a mixture of 7.5 parts by weight of 1,2,4-triethoxybenzene, 40 parts by volume of tetra-chloroethane and 7.5 parts by weight of succinic anhydride are added 23 parts by weight of anhydrous aluminum chloride. The mixture is stirred for 1 hour at 25°C and for another 2 hours at 60°C. After addition of 50 parts by weight of ice and 50 parts by volume of concentrated hydrochloric acid, the reaction mixture is subjected to steam distiilation. [Pg.1521]

Succinic anhydride yields the cyclic imide succinimide when heated with ammonium chloride at 200 °C. Propose a mechanism for this reaction. Why do you suppose such a high reaction temperature is required ... [Pg.833]

Reactions with anhydrides afford interesting compounds having a carboxylic acid function (Table 26, entries 5 and 7 and Figure 40). It is notable that in the case of succinic anhydride, if the reaction is carried out at 25 °C, only one substitution occurs on the nitrogen atom, if the temperature is increased to 180 °C, there is a second substitution giving rise to a heterocyclic substituent (Table 26, entries 5-8). [Pg.66]

Under the present reaction conditions, we observed the formation of succinic anhydride almost simultaneously together with the formation of GBL. The hydrogaiation of maleic anhydride yields succinic anhydride, and the subsequent hydrogenation of succinic anhydride produces GBL. The rate of hydrogenation of maleic anhydride to succinic anhydride was very fast compare to that of succinic anhydride to GBL. When the reaction was CEuried out wifliout solvent, tetrahydrofiiran was not producal. The above results indicate that the Pd-Mo-Ni/SiOz catalyst under our experimental conditions played an important role for the selective formation of GBL. Therefore, it is inferred that the catalyst composition may influence the route by which tetrahydrofiiran was formed, probably due to the different absorption mechanism of maleic anhydride, succinic anhydride, and GBL. [Pg.827]

In the presence of bases, succinic anhydride gives rise to a very violent reaction after being heated for thirty hours. The temperature reached 550°C in some places of the apparatus when the glass container melted. No explanation was given. By analogy with the previous case, it can be assumed that the decomposition of the anhydride may have caused the accident. [Pg.332]


See other pages where Succinic anhydride reactions is mentioned: [Pg.104]    [Pg.104]    [Pg.49]    [Pg.104]    [Pg.104]    [Pg.49]    [Pg.737]    [Pg.240]    [Pg.18]    [Pg.19]    [Pg.537]    [Pg.26]    [Pg.140]    [Pg.132]    [Pg.59]    [Pg.79]    [Pg.623]    [Pg.648]    [Pg.929]    [Pg.674]    [Pg.51]    [Pg.182]    [Pg.137]   
See also in sourсe #XX -- [ Pg.364 ]




SEARCH



2- succinic anhydrid

Anhydrides reactions

Furan, 2,5-bis reaction with carbonyl compounds from succinic anhydrides

Reaction with succinic anhydride

Succinic anhydride

© 2024 chempedia.info